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Zusammenfassung

Die Evolution der Gehirngröße und der Zusammenhang zur kognitiven Evolution ist seit langem ein

heißes Thema in der vergleichenden Biologie. Letztlich ist es das Ziel, das außergewöhnlich große

Gehirn und das unvergleichbare Level an Intelligenz in unserer eigenen Spezies zu erklären. Zahlre-

iche Theorien wurden vorgeschlagen, um die anhaltende Zunahme der relativen Gehirngröße und ihre

Variation innerhalb der Wirbeltiere zu erklären. Die Theorien konzentrieren sich entweder auf soziale

oder ökologische Faktoren und argumentieren mit einer erhöhten Fitness durch verbesserte kognitive

Fähigkeiten oder energetische Einschränkungen, die maßgeblich die Evolution der Gehirngröße gestal-

tet. Um die zugrundeliegenden evolutionären Muster zu verstehen, ist es entscheidend diese verschiede-

nen Theorien und Perspektiven zu integrieren, da sie sich nicht gegenseitig ausschließen. Daher wurden

mit dieser Doktorarbeit verschiedene Hypothesen der sozialen und ökologischen Wechselbeziehung zur

Entwicklung von Gehirngröße getestet und diese zu einem umfangreichen Gefüge zusammengefasst.

Die ersten beiden Teile dieser Arbeit untersuchten die Beziehungen zwischen relativer Gehirngröße (rel-

ativ zur Körpergrösse) und (i) Gelegenheiten für soziales Lernen, (ii) der Komplexität der Futternische

und (iii) Saisonalität und stabilisierter Energieversorgung. Im letzten Teil habe ich die Beziehungen

innerhalb eines konzeptionellen Gefüges, welches zwischen evolutionären Möglichkeiten und direkten

kognitiven Konsequenzen von vergrößerten Gehirnen unterscheidet, getestet. Dies geschah unter der

Berücksichtigung einer Vielzahl von sozialen und ökologischen Faktoren.

Der erste Teil zielte darauf ab zu untersuchen, wie Gelegenheiten für (soziales) Lernen die Evolu-

tion von sowohl Futternischenkomplexität als auch der Gehirngröße in verschiedenen Wirbeltierlinien

formen. Bei den Vögeln benutzten wir die Anzahl der toleranten Vorbilder und die Zeit in Verbindung

mit ihnen als Mass für Gelegenheiten für soziales Lernen. Wir konnten zeigen, dass dort, wo diese

Gelegenheiten reichlicher sind, die Arten relativ größere Gehirne entwickelt haben. In Primaten und

Karnivoren zeigten wir, dass eine langsame Entwicklung und eine spätere Ernährungsunabhängigkeit

mit komplexeren Futternischen zusammenhängen und dass diese wiederum mit relativer Gehirngröße

korrelieren (in Primaten die kumulative Summe von Futternischenelementen und in Karnivoren spez-

ifische Elemente davon). Diese Erkenntnisse unterstützen die ’cultural intelligence’ Hypothese, die

die Koevolution zwischen den Gelegenheiten für sozialen Lernens, der Größe und Komplexität des

Verhaltensrepertoires und der Evolution von Kognition nahelegt.

Der zweite Teil konzentrierte sich darauf, wie die Saisonalität und die damit verbundene jährliche Vari-

ation der Energieversorgung die Evolution der relativen Gehirngröße bei nicht-primaten Säugetieren

beeinflussen. Wir haben die Nutzen- und Kostenperspektive kombiniert indem wir die folgenden

beiden nicht-exklusiven Hypothesen testeten: Die ’cognitive buffer’ und die ’expensive brain’ Hy-

pothese. Nach der Methodik bisheriger Forschungsarbeiten in Primaten unterscheideten wir zwischen

der Saisonalität der Umwelt und der tatsächlich erlebten Saisonalität, gemessen durch die Variationen

in der Nahrungszusammensetzung. Zuerst haben wir herausgefunden, dass die evolutionäre Zunahme
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der Gehirngröße nicht notwendigerweise mit einem höheren Mass an Pufferung der umweltbedingten

Saisonalität verbunden ist. Daher haben wir vorgeschlagen, dass die kognitive Pufferung möglicher-

weise nur in anthropoiden Primaten mit relativ grossen Gehirnen vorkommt. Zweitens zeigten wir,

dass der Grad der Schwankungen in energiereicher Nahrung negativ mit relativer Gehirngröße korre-

liert. Dieses Resultat bestärkt die ’expensive brain’ Hypothese, die besagt dass eine stabilisierte und

ununterbrochene Energieversorgung entscheidend ist für eine evolutionäre Vergrösserung des Gehirns

und für die Evolution der Kognition.

Der letzte Teil dieser Arbeit integrierte die beiden Arten von Hypothesen einschließlich sozialer und

ökologischer Faktoren für Primaten. Wir haben zwischen evolutionären Möglichkeiten und kognitive

Konsequenzen unterschieden. Als evolutionäre Möglichkeiten definierten wir potentielle Selektions-

drücke, die zu einer Zunahme der Gehirngröße führen können, falls die Kosten für ein vergrössertes

Gehirn überwunden werden können. Unter kognitiven Konsequenzen verstehen wir die unmittelbar

verbesserten sozialen und ökologischen Fähigkeiten als Folge eines grösseren Gehirns. Wir verwen-

deten multivariate Statistik und eine phylogenetische Pfadanalyse um die evolutionären Beziehungen

innerhalb des vorgeschlagenen konzeptionellen Gefüges zu testen. Die Ergebnisse zeigten, dass ökol-

ogische mehr als soziale evolutionäre Möglichkeiten die Evolution von Gehirngröße antreiben. Das

bedeutet, dass nur dort, wo ökologische Voraussetzungen eine erhöhte und stabilisierte Energiever-

sorgung begünstigen, eine evolutionäre Zunahme der Gehirngröße möglich ist. Weiterhin zeigten die

Analysen, dass die Gehirngröße stark mit den sozialen und ökologischen Konsequenzen korreliert ist

und dass diese auch miteinander in hohem Maße korrelieren. Dies deudet darauf hin, dass allge-

meine Verhaltensflexibilität stark mit relativer Gehirngröße zusammenhängt, unabhängig von den

ursprünglichen Selektionsdrücken. Zusammenfassend schlugen wir vor, dass komplexe soziale Verhal-

tensweisen nur dort hervortreten können, wo die energetischen Kosten von großen Gehirnen durch

ökologische Bedingungen unterstützt werden.

Zusammengefasst zeigt die vorliegende Doktorarbeit, dass nur dort, wo die Ökologie die energetis-

chen Voraussetzungen von vergrösserten Gehirnen begünstigt, sich höhere Kognition entwickeln kann.

Darüber hinaus deuten die Ergebnisse darauf hin, dass Gelegenheiten für soziales Lernen den koevolu-

tionären Prozess zwischen ökologischen Voraussetzungen und Hirngröße weiter vorantreiben; dies ist

vollkommen mit der Evolutionsgeschichte der Hominin-Linie stimmig. Dabei liefert diese Doktorarbeit

wichtige Einblicke in die Entwicklung der Gehirngröße innerhalb der Wirbeltiere und hilft letztlich die

Evolutionsgeschichte unserer eigenen Spezies weiter zu verstehen.

PhD thesis, Sereina M. Graber, 2017 vii



Summary

The evolution of brain size and its link to cognitive evolution is since long a hot topic in comparative

biology. Ultimately, the aim is to explain the exceptionally large brain and the unmatched level of

intelligence in our own lineage. Numerous theories have been suggested trying to explain the con-

tinuing expansion of relative brain size and its variation across vertebrate clades. The theories focus

either on social or ecological factors, arguing in favor of increased fitness through enhanced cognitive

abilities or of energetic constraints shaping the evolution of brain size. To understand the underly-

ing evolutionary patterns, it is crucial to integrate the different theories and perspectives, since they

are not mutually exclusive. Therefore, this thesis tested different hypotheses on social and ecological

correlates of brain size evolution and also integrated them into a comprehensive framework. The first

two parts of this thesis examined the relationship between relative brain size (relative to body mass)

and (i) opportunities for social learning, (ii) the complexity of the foraging niche, and (iii) seasonality

and stabilized energetic intake. In the last part, I tested the relationships within a conceptual frame-

work differentiating between evolutionary opportunities and direct cognitive consequences of enlarged

brains, including a broad variety of social and ecological factors.

The first part’s aim was to investigate how opportunities for (social) learning shape the evolution

of both foraging niche complexity and brain size in different vertebrate lineages. In birds, we used the

number of tolerant role models and the time in association with them as a proxy for opportunities for

social learning, and showed that where these opportunities are more abundant, species evolved rela-

tively larger brain sizes. In primates and carnivorans we showed that a slow pace of development and

later nutritional independence, respectively, are linked to more complex foraging niches, and that those

in turn are linked to relative brain size (in primates the cumulative sum of foraging niche elements, and

in carnivorans specific elements thereof). These findings support the cultural intelligence hypothesis,

which suggests the coevolution between opportunities for social learning, the size and complexity of

the skill repertoire and the evolution of cognition.

The second part focused on how seasonality and the concomitant annual variation in the energetic

input has affected the evolution of relative brain size in non-primate mammals. We combined the ben-

efit and cost perspectives by testing the two non-exclusive hypotheses: the cognitive buffer and the ex-

pensive brain hypothesis. Following the methodology of previous work in primates, we distinguished

between seasonality in the environment and actually experienced seasonality in terms of fluctuations

in the diet composition. First, we found that the evolutionary increase in brain size is not necessarily

linked to higher degrees of buffering environmental seasonality. Therefore, we suggested that cognitive

buffering might be unique to large-brained anthropoid primates. Second, our results showed that the

extent to which highly nutritive foods fluctuate with time is negatively associated with relative brain

size. This result confirms the expensive brain hypothesis, which argues that a stabilized energetic

input is crucial for an increase in brain size and the evolution of cognition.
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The final part of this thesis integrated the two classes of hypotheses and also included social and

ecological factors in primates. We discriminated between evolutionary opportunities, factors which

may facilitate an evolutionary increase in brain size in case the costs and constraints can be overcome,

and cognitive consequences, which represent immediately enhanced social and ecological abilities due

to increase in brain size. We used multivariate statistics and a phylogenetic path analysis to test for

the evolutionary relationships within the proposed conceptual framework. The results showed that

ecological more than social opportunities drive the evolution of enlarged brain. This implies that only

where ecological preconditions favor an increased and stabilized energetic supply, an evolutionary in-

crease in brain size is possible. Further, the analyses showed that brain size is strongly correlated with

both the social and ecological consequences, as well as that they are highly interrelated. This suggests

that in primates, regardless of the selective agents, general behavioral flexibility is a close associate

of relative brain size. In conclusion, we suggested that only where the energetic expenses of enlarged

brains are supported by ecological conditions, complex social processes can become prominent.

In sum, this thesis shows that only where ecology favors the energetic requirements of increased

brain sizes, higher levels of cognition can evolve. In addition, the results suggest that opportunities

for social learning further facilitate the coevolutionary process between ecological preconditions and

brain size, which is fully consistent with the evolutionary history of the hominin lineage. Thereby, this

thesis yields important insights in the evolution of brain size across vertebrates and ultimately helps

to further understand the evolutionary history of our own species.

PhD thesis, Sereina M. Graber, 2017 ix



Chapter 1

General Introduction

The brain is a fascinating and multifaceted organ. Together with the spinal cord it forms the central

nervous system and is responsible for the control and functioning of body physiology, communication,

behavioural actions, and most importantly, it is linked to all cognitive processes.

Humans are known for their large brain size and high levels of cognition. Within the last five million

years our brains more than tripled in size (from roughly 350cm3, to about 1350cm3 volume), and

particularly during the last 1.5 millions of years major changes in volume and folding happened within

the hominin lineage (reviewed in Geary 2005). On an evolutionary time scale, this is very fast.

Across major vertebrate lineages, there is large variation in (relative) brain size. Mammals and

birds having larger brains for their given body mass compared to amphibians, reptiles and fish, also

reflecting the evolutionary long-term trend of a general increase in relative brain size (Marsh’s rule:

Jerison 1973) (Fig. 1.1A). But also within lineages, especially within mammals, relative brain size

varies considerably, with primates including humans showing the largest relative brain size across the

whole animal kingdom. Those patterns also remain using the number of neurons as a proxy for brain

capacity (Herculano-Houzel 2017). The variation in relative brain size across mammalian lineages is

represented in Fig. 1.1B.

Figure 1.1: A) Brain size variation across the main vertebrate groups given by the relationship between log brain mass and log body mass
(modified from Jerison 1973). B) Mammalian phylogenetic tree including four orders: primates, carnivorans, rodents and artiodactyls.
The coloring of the branches represent residuals of brain size based on a log-log regression of brain mass and body mass.

1
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Chapter 1. General Introduction

The continuing expansion and the massive variation in brain size has elicited attention mainly

because the evolution of brain size is closely linked to the evolution of cognition. Various interspecific

studies show that brain size is associated with performance in a broad range of different cognitive

paradigms, together comprising of what is defined as intelligence in humans (Gottfredson 1997). A

comparative study across different vertebrate lineages including mainly primates and birds shows ev-

idence for a close link between the evolution of self-control and brain size (MacLean et al. 2014).

Across mammalian carnivorans, Benson-Amram et al. 2016 show that those species better at open-

ing puzzle boxes, and thus better at solving novel problems, are larger-brained. In birds as well as

mammals and even reptiles and amphibians, several studies suggest that species with larger brains

are more innovative and more successful when introduced into novel environments (Timmermanns et

al. 2000, Sol and Lefebvre 2000, Lefebvre et al. 2004, Sol et al. 2005, 2007, 2008; Overington et al.

2009; Amiel et al. 2011; Holekamp et al. 2015). And finally, several comprehensive studies including

measurements from multiple domains show that brain size is a good predictor of global cognition in

primates (Reader and Laland 2002, Deaner et al. 2007, Reader et al. 2011). Together, these lines of

evidence imply that brain size is a good indicator for general cognitive performance (i.e. intelligence),

including the abilities to behave flexibly and solve ecological and social problems.

Therefore, to date the main focus of evolutionary research on interspecific brain size evolution is to

explain what factors led to certain species having larger brains and thus being more intelligent than

others, and ultimately, what led to the unusual brain size and intelligence in our own lineage.

The aim of this thesis is to integrate different aspects of the evolution of brain size and explain

brain size variation within and across vertebrate lineages in relation to social as well as ecological

factors. This introduction first gives an overview of previously proposed hypotheses trying to explain

brain size variation, and how they were tested. Then I introduce the conceptual approach integrating

evolutionary drivers and consequences of enlarged brain size. Finally, I present considerations on the

methodological approach and a more detailed synopsis of the following chapters.

PhD thesis, Sereina M. Graber, 2017 2
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Chapter 1. General Introduction

Explaining Brain Size Variation - Benefits and Costs

Over the last decades, numerous theories have been suggested to explain the interspecific variation

in brain size, with the ultimate aim to identify factors which led to the extremely large brains in

our own lineage. The hypotheses essentially follow one of two different approaches: some focus on

selective benefits in terms of enhanced cognition, which allows for solving complex social and ecological

problems, whereas others focus on the energetic costs and constraints of enlarged brains.

Energetic Costs of Enlarged Brains

Brains are unique organs in that they require long periods of development (Janson and van Schaik

1993) and both a large and steady supply of energy, especially during the differentiation phase (Mink

et al. 1981; Rolfe and Brown 1997, Bauernfeind et al. 2014). In humans, the brain takes up to 20% of

the total resting metabolic rate (Holliday 1986). These high costs likely impose an energetic constraint

on evolutionary increases in brain size. Several studies in the 1980s already began to focus on the en-

ergetic perspective of brain size evolution, suggesting that the basal energetic throughput determines

the maximum potential brain size of a species (Mink et a. 1981, Armstrong 1983, Hofman 1983).

Building up on them and on other related work (e.g. Bennett and Harvey 1985), the Expensive Brain

Framework (Isler and van Schaik 2009a), also known as the Expensive Brain Hypothesis, combines

different non-exclusive pathways illustrating the energetic allocation of brain growth/maintenance in

relation to other functions (Fig. 1.2). It suggests that there are two basic ways of how enlarged brains

are paid for - either by reducing the energetic allocation to other functions or through an increase in

the total energetic turnover (or some combination).

In the first path, an increase in brain size is in trade-off with the energy required for other functions

such locomotion or production (including reproduction and growth). This is supported by various

studies. Considering the locomotion trade-off, Navarrete et al. (2011) and Heldstab et al. (2016)

found evidence that larger brained mammals have smaller adipose depots. They suggest that lower

adipose depots, entailing a reduction in the costs of activity and locomotion and thus total energy ex-

penditure, ultimately enable an increase in the energetic allocation to the brain. Furthermore, studies

show that species with larger brains show reduced annual fertility (Isler and van Schaik 2009a) and

lifetime rates of reproduction (Isler and van Schaik 2009b), supporting the production trade-off.

In the second path, brain enlargement is achieved by a stable net increase in the energetic input.

One proxy of the net energy input is the basal metabolic rate (BMR). Not only in primates (Isler et

al. 2008) but also across mammals in general (Isler and van Schaik 2006) it is found that an increase

in the basal metabolic turnover is correlated with an enlarged brain. On a more ultimate level, a

stable net increase in the energetic input allowing for a brain enlargement can be achieved through

either improved diet quality (Fish and Lockwood 2003, DeCasien et al. 2017), energy subsidies during

breeding (Isler and van Schaik 2009b) or through a stabilized energetic intake (i.e. avoiding periods

of starvation in seasonal habitats) (van Woerden et al. 2010, 2012, 2014), two hypotheses for which

support is found mainly in primates.

To sum up, larger brains are only possible where either more total energy is available or a reduc-

tion in allocation to locomotion or production is possible.
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Figure 1.2: Expensive brain framework according to Navarrete et al. 2011. Evolutionary brain enlargement is energetically affordable
through two basic, non-exclusive, ways: through an increase in the net energetic input and through a change in the energetic allocation
to other functions.

Social Benefits of Enlarged Brains

The Social Brain Hypothesis

Considering the selective benefits, the most prominent hypothesis identifies social complexity as the

main driver of brain size evolution, known as the social brain hypothesis (initially known as the Machi-

avellian Intelligence hypothesis, Byrne and Whiten 1988, Dunbar 1998). It states that large or complex

brains are needed to deal with complex social problems. Thus, the size, density and hierarchical struc-

ture of the social group in which a species lives and the social challenges this implies are predicted

to be directly correlated with cognitive abilities. A modified version of this theory argues that the

coordination and negotiation of long-term pair bonds requires enhanced cognition, thus affecting the

evolution of brain size (Shultz and Dunbar 2007, 2010). In primates, indeed, various dimensions of

social group living including group size, clique size and other social structure characteristics are shown

to partly explain variation in size of regions or the overall brain (Sawagachi and Kudo 1990, Dunbar

1992, Pérez-Barbeŕıa et al. 2007, Lehmann and Dunbar 2009, Shultz and Dunbar 2007). Further,

in birds and mammals, studies found correlative support that the evolution of brain size and thus

cognition is related to long-term pair bonding (Emery et al. 2007, Shultz and Dunbar 2007, 2010).

Other studies, however, are not conclusive regarding the social brain hypothesis. MacLean et al.

(2009), for instance, found no evidence for a relationship between brain size and both, social group

size and pair-bonding in lemurs. Also in carnivorans, the social brain hypothesis lacks persuasive

empirical evidence (Finarelli and Flynn 2009, Pérez-Barberia et al. 2007, Holekamp et al. 2015). And

very recent study across a broad sample of primate species further calls into question the social brain

hypothesis and shows that diet rather than sociality predicts primate brain size evolution (DeCasien

et al. 2017).

These controversial findings are based on three main objections against the social brain hypothe-

sis as an exclusive explanation for the evolution of enlarged brains.

First, it does not explain major grade-shifts across taxa (Holekamp 2007, van Schaik et al. 2012,
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Holekamp et al. 2015). Lemurs and monkeys show a remarkable difference in relative brain size, but

live in comparable social systems and thus require similar socio-cognitive abilities. Along the same

lines, many carnivoran species (e.g. hyenas or wild dogs) live in social groups of comparable comlexity

to those in primates, but still are relatively smaller-brained than primates.

Second, the social brain hypothesis is inconsistent with the mounting evidence for domain general cog-

nitive abilities, i.e. general intelligence (Burkart et al. 2016). More and more studies in non-human

animals suggest that intelligence (as a strong correlate of brain size) is a domain-general construct

which allows for behavioral flexibility in different contexts (Deaner et al. 2006, Reader et al. 2011,

Navarrete et al. 2016, Burkart et al. 2017). This suggests parallel emergence of cognitive abilities

in different domains; thus enhanced cognition allows for complex behavior in not only social but also

ecological contexts (see also Integrating Social and Ecological Aspects of Brain Size Evolution: The

Concept of Opportunities and Consequences, p. 9).

Finally, it ignores that brains are metabolically very expensive in that they need a high and stable en-

ergetic input, during development as well as for maintenance. Brains are known to appropriate large

portions of the metabolism, especially during the growth phase (Holliday 1986, Bauernfeind et al.

2014), and are at same time highly sensitive to energetic deficits (Levitsky and Strupp 1995, Nowicki

et al. 1998). The juvenile risk hypothesis (Janson and van Schaik 1993) suggests that larger brains

require slow growth in order to avoid harmful energetic deficits. Further, larger brains are proposed

to require a longer period of build-up through learning and practicing of skills before they are fully

functioning (needing-to-learn hypothesis: Ross and Jones 1999). Thus, for selection to favor enlarg-

ing brains the organism must be able to provide it with an increasing and stable amount of energy,

improved survival to compensate for the slower development, or both. Unless this requirement can be

met by reducing energy allocated to other functions (Isler and van Schaik 2009a, see Energetic Costs of

Enlarged Brains, p. 3), selection in favor of improved ecological cognition, with positive consequences

for the mean and variance in stable energy intake and for increased survival, may be most likely.

Improved cognitive performance as a response to social and ecological environment, therefore, may

only lead to increased brain size if it also overcomes these additional costs (Isler and van Schaik 2009a).

The Cultural Intelligence Hypothesis

The cultural intelligence hypothesis (Whiten and van Schaik 2007, van Schaik and Burkart 2011, van

Schaik et al. 2012) broadens the perspective of the social brain hypothesis and suggests that the

cultural transmission of complex skills is the missing link for understanding the evolution of brain size

and cognition.

A large set of foraging skills, also implying higher degrees of behavioral flexibility, is advantageous

when it comes to novel or changing environments and ultimately may increase survival (Wright et al.

2010). A complex foraging niche, comprising a large and complex set of skills, which allows for access

to highly nutritive and annually stable food sources (Leonard and Robertson 1997), is also expected

deliver direct energy for paying the maintenance and growth of a large brain (Gibson 1986).

Since foraging skills are often not simply innate, but are acquired gradually during ontogeny (pri-

mates: Watts 1985, Johnson and Bock 2004, Schiel et al. 2010; non-primate mammals: Rolseth et al.

1994, Sargeant et al. 2005, Thornton and McAuliffe 2006, Sand et al. 2006, Holekamp et al. 1997,

Seidensticker and McDougal 1993; birds: Norton-Griffiths 1967, Breitwisch et al. 1987, Guo et al.

2010, Carl 1987, Morrison et al. 1978, Burger and Gochfeld 1983), more complex foraging skills are

thus likely to require extended periods of acquisition and learning.
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The acquisition of skills relies on the continuum between two basic mechanisms - individual explo-

ration and/or socially mediated learning. While through individual exploration, new skills need to be

invented over and over again, social transmission represents a more efficient way of skill transmission

(van Schaik and Burkart 2011). In order to learn from others, individuals must have the opportunities

to spend time in association with tolerant role models. The extent to which individuals can do this

has been suggested to affect an individual‘s skill repertoire and innovation propensity (Richerson and

Boyd 2000, van Schaik and Burkart 2011). In primates, for example, a cross-species study by Reader

and Laland (2002) showed that higher frequencies of social learning are linked to more complex sets

of skills such as tool use. Moreover, the percentage of time in association, representative of oppor-

tunities for social learning, is positively correlated with the number of complex cultural variations in

chimpanzees and orangutans (van Schaik 2003, Whiten and van Schaik 2007).

Furthermore, there are several lines of evidence linking the complexity of skill repertoire and its social

transmission to individual learning ability and brain size (i.e. intelligence). First, various studies in

birds and primates have shown that social and asocial learning abilities are correlated (Lefebvre and

Giraldeau 1996, Lefebvre et al. 1996, Lefebvre 2000, Reader and Laland 2002). And second, the

ability to learn complex skills are strongly linked to brain size. There is a considerable amount of

comparative evidence, mainly in birds, suggesting that high innovation frequencies, representative for

individual learning, and complex skills show correlated evolution with brain size (e.g. Lefebvre et al.

1997, Timmermans et al. 2000).

Taken together, if additionally acquired skills can be translated into fitness benefits and assuming

social learning to be more efficient than individual learning, these findings suggest a positive feedback

scenario of correlated evolution between social transmission, complexity of skill repertoire (or niche

complexity) and intelligence (i.e. brain size, Deaner et al. 2007). Based on this, the cultural intelli-

gence hypothesis (Whiten and van Schaik 2007, van Schaik and Burkart 2011, van Schaik et al. 2012)

suggests that cultural transmission of complex skills drive the evolution of intelligence, particularly in

species where close proximity with tolerant role models and thus opportunities for social learning are

common.

Therefore, longer periods of development and nutritional dependence which go hand in hand with

more time in close proximity to tolerant role models and thus more time to acquire skills, are expected

to be correlated with larger and more complex sets of skills (i.e. more complex foraging niches) and

eventually are expected to be linked to enlarged brains. So far, these links have not been investi-

gated in a cross-species context. The second chapter of this thesis investigates these pathways in a

comparative sample of primates and carnivorans. We test whether elongated periods of development

and provisioning, offering more opportunities for socially mediated learning, allow for the evolution

into more complex foraging niches and, whether the complexity of these foraging niches are related to

brain size.

In birds, several studies have found support for the evolutionary links between social learning and

behavioral flexibility (Sasvari 1985), as well as behavioral flexibility and brain size (e.g. Overington et

al. 2009). Whether highly intelligent avian species also show higher degrees of culture/social learning,

however, has not been systematically tested so far. The third chapter of this thesis aims to enlighten

the evolutionary framework of the cultural intelligence hypothesis in birds by testing the correlation

between opportunities for social learning and brain size. Because direct measurements for the extent

of culture are virtually impossible to obtain, especially in the wild, we estimated opportunities for

social learning as a function of number of tolerant role models and time in close proximity with them.
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Ecological Benefits of Enlarged Brains

Another set of hypotheses proposes that the challenges posed by the interaction with the ecological

and physical environment promote the evolution of brain size. The patchy spatio-temporal distri-

bution of food sources (Milton 1988, Gibson 1986) and greater need for orientation in larger home

ranges (Clutton-Brock and Harvey 1980) may require higher levels of cognition and ultimately drive

the evolution of enlarged brains. Further, the technical intelligence hypothesis (Parker and Gibson

1977, Gibson 1990, Byrne 1997) suggests that extracting protected foods, which often requires com-

plex and coordinated processing techniques, demands higher levels of cognition and ultimately drives

the evolution of enlarged brains, which is also supported by a recent comparative study in primates

(DeCasien et al. 2017). And finally, from an inclusive ecological perspective, the cognitive buffer

hypothesis predicts that more encephalized (brain size relative to body mass) species show a greater

general behavioral flexibility and thus are better at responding to seasonal fluctuations and unpre-

dictable changes in the environment ultimately increasing survival rates and longevity (Allman et al.

1993, Sol et al. 2009).

Whether an increase in brain size is eventually favored by natural selection depends on the degree by

which the socio- and eco-cognitive benefits outweigh the energetic costs. A species benefits from a

larger brain only if enhanced cognition actually translates into improved survival and reproduction.

In an ecological environment which entails unavoidable starvation or predation and thus a fast life

history, enhanced cognition does not pay off and therefore selection is unlikely to favor an increase

in brain size (i.e. life-history filter, cf. van Schaik et al. 2012). In sum, in order to understand the

massive cross-species variation in brain size and its underlying evolutionary processes, it is crucial to

take both perspectives (costs and benefits) into account.

Combining Costs and Benefits of Enlarged Brains

Seasonality and the Evolution of Brain Size

Seasonality is defined as recurrent fluctuations in climate and environmental productivity. It represents

an ideal phenomenon to study the concomitant effects of the cost and benefit perspectives, as it may

be both, energetically constraining as well as cognitively challenging.

On the one hand, seasonally recurrent fluctuations in climate and the concomitant variation in food

availability strongly affect the energy budget of animals. The low food availability during lean periods

in highly seasonal environments poses an energetic challenge for its inhabitant species. Since, as argued

above, brains are metabolically very expensive with maintenance and growth requiring a high amount

and a continuous supply of energy, the expensive brain framework (Isler and van Schaik 2009a) predicts

that higher degrees of seasonality (implying severe periods of food scarcity and thus energy shortages)

constrain the evolution of brain size. Therefore, species experiencing higher degrees of seasonality,

irrespective of the degree of environmental seasonality, are expected to evolve smaller relative brain

sizes (Fig. 1.3A).

On the other hand, as suggested by the cognitive buffer hypothesis, species with an increased brain

size, i.e. increased cognitive capacity, are expected to respond more flexibly to seasonal fluctuations

in the environment (van Woerden et al. 2010, 2012, 2014). Exploiting alternative food resources in

periods where the preferred ones are scarce reduces the variability in energetic input (i.e. experienced

seasonality) relative to variability in the environment (i.e. environmental seasonality) (van Woerden

et al. 2010, 2012, 2014; Melin et al. 2014) (Fig. 1.3B). Thus, larger-brained species are expected to
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deal better with seasonally lean periods, and ultimately, to show an increased survival compared to

their smaller-brained relatives living in the same habitats (Allman et al. 1993, Sol 2009). The two

complementary hypotheses are explained in Fig. 1.3 based on the distinction between environmental

and experienced seasonality.

Figure 1.3: Distinction between environmental and experienced seasonality and its relation to brain size according to van Woerden et
al. (2010, 2012, 2014). The dashed and solid lines represent the environmental and experienced seasonality, respectively. The dotted
line represents the minimum energetic need to maintain a certain brain size. If the energetic requirements during the lean season fall
below the minimum energetic need to maintain a certain brain size (red shaded area) as presented in the top panel, either brain size
can be reduced to the level of the energetic input during the low season representing the expensive brain hypothesis (A) or the brain
and its cognitive capacity is used to find alternative food resources during the lean season which allows to keep the energetic input (i.e.
experienced seasonality) relatively constant throughout the year, as predicted by the cognitive buffer hypothesis (B).

Recent work on primates found support for both, the cognitive buffer as well as the expensive

brain hypothesis (van Woerden et al. 2010, 2012, 2014). The cognitive buffer hypothesis is shown to

apply primarily in anthropoids, and only to a limited extent in lemurs, whereas the expensive brain

pattern seems to be more ubiquitous, applying across all primate lineages. Outside the primate clade,

currently no study has tested the effect of seasonality on brain size evolution in mammals by system-

atically distinguishing between experienced and environmental seasonality. Finding out whether the

pattern in anthropoids is unique or instead lemurs are the exception is crucial to eventually understand

the unmatched degree of cognition in our own lineage. Therefore, the patterns in primates need to be

compared in a broad cross-species context including also non-primate mammals.

The aim of the fourth chapter of this thesis is to extend the predictions of the cognitive buffer and

expensive brain hypotheses in relation to seasonality to non-primate mammals. Following the method-

ological approach by van Woerden et al. (2010, 2012, 2014), we also systematically distinguish between

experienced and environmental seasonality, and aim to compare the findings in non-primate mammals

to the recent findings in primates.
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Integrating Social and Ecological Aspects of Brain Size Evolution

The Concept of Opportunities and Consequences

Whether brain size variation is best explained by ecological or social benefits is a long-standing topic

of debate. Despite the crucial objections precluding social complexity as the sole, or even main driver

of an increase in brain size (see section The Social Brain Hypothesis, p. 4), the social brain hypothesis

remains to date the most prominent explanation particularly in primates, and thus also humans. For

example, Dunbar (2016, p. 59) states that
”
There is a general consensus that the prime mover in

primate brain evolution (and perhaps even that of all mammals and birds) is the evolution of more

complex forms of sociality.“ Most previous studies in primates have focused mainly on social factors

only or else included only a few simple ad-hoc measures of the ecological domain, such as degree of

folivory or terrestriality (e.g. Shultz and Dunbar 2007). A limited set of variables as a proxy for the

degree ecological complexity is unlikely to reveal a strong evolutionary pattern. However, most im-

portantly, the increasing evidence that primates show general cognitive flexibility (Deaner et al. 2007,

Reader et al. 2011, Burkart et al. 2016), similar to general intelligence in humans, implies that we can-

not identify the selective benefits that favored the evolution of larger brains by examining its cognitive

consequences because cognitive abilities in the ecological and social domains may be equally improved.

In other words, once a large brain has evolved, the enhanced cognition may enable complex behavior

in social as well as ecological contexts. To date, the correlates of increased brain size were invariably

interpreted as drivers, with encephalization being the direct evolutionary response (e.g. Navarrete et

al. 2016). Tests therefore need to carefully distinguish between preconditions that enabled for the

evolution of larger brains (potential selective pressures) from their cognitive consequences.

Furthermore, regarding potential selective pressures (irrespective of the general cognitive consequences

of enlarged brains), social and ecological factors are also not mutually exclusive and it is reasonable

to assume that not the social or physical environment per se but rather a combination, including a

wide range of factors from both domains, shape the evolution of interspecific brain size variation. A

recent study in primates has integrated various measures including sociality as well as diet and pro-

vide evidence that primate brain size evolution is more predicted by diet than sociality (DeCasien et

al. 2017). Even though this study provides a systematic empirical approach with convincing results,

they included only a limited number of variables and more importantly, did not distinguish between

potential drivers and cognitive consequences.

The aim of the fifth chapter of this thesis is to resolve these issues of previous studies by (1) including

a comprehensive set of both ecological and social variables and by (2) systematically distinguishing

between potential selective pressures (i.e. opportunities) and evolutionary consequences. With this

new conceptual approach we try to disentangle what factors allowed for the evolution of enlarged

brain in the first place (opportunities), and what factors might simply reflect enhanced cognition of

increased brain size (consequences). Across a broad sample of primate species we systematically test

the evolutionary associations and directions between brain size, opportunities, consequences. The

distinction between opportunities and consequences has not been made before.

As social and ecological opportunities we define conditions in which selective pressures toward an

enlarged brain may exist. These selection pressures, however, can only act in cases where the fit-

ness benefits of enhanced cognition outweigh the energetic and developmental costs associated with

increased brain size. Based thereon, we expect that an increasing number of potential selective pres-

sures can lead to an increase in brain size in some lineages but not in others where energetic costs
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cannot be offset due to life history constraints, resulting in a moderate statistical correlation (Fig.

1.4A). On the other hand, given the assumption of a form of general intelligence as opposed to a com-

pletely modular mind (Geary 2005, Deaner et al. 2006), once a large brain has evolved, it can be used

to deal with problems in a broad variety of contexts. This likely includes highly complex social and

ecological challenges, such as tool use or coalition formation, which we define as consequences. These

consequential factors of enlarged brains require extended periods of learning, as shown in chapter 3

of this thesis, and we suggest a large brain to be a necessary precondition for evolving these traits.

Mounting evidence from non-human animals indeed suggests that intelligence (as a strong correlate

of brain size) is a domain-general construct which allows for behavioral flexibility in different contexts

(Deaner et al. 2006, Reader et al. 2011, Navarrete et al. 2016, Burkart et al. 2016). Thus, cognitive

adaptations evolved in one context are applicable to other situations; in other words, if a species

performs well in one domain it should also perform well in the other domain. Therefore a strong

association between brain size and both social and ecological consequential factors is expected (Fig.

1.4B) as well as a strong link within the consequential factors representative for general behavioral

flexibility (Fig. 1.4C).

Figure 1.4: Systematic distinction between potential social and ecological selective pressures (i.e. opportunities) and consequences of
enlarged brains. Whereas we expect a strong relationship between brain size and consequences as well as within (B, C), the effect of
opportunities on brain size is expected to be less strong, because opportunities for selection may not be taken (A).
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Phylogenetic Comparative Approach and Methodological Consider-

ations

Phylogenetic Comparative Approach

To understand the potential selection pressures and the consequential adaptations of brain size evo-

lution, a comparative approach is indispensable. Selection experiments are difficult to conduct, not

only because of long generation times or ethical concerns, but also because the various influencing

factors affecting the evolution of brain size are hard to control (e.g. ecological conditions including

seasonality, niche complexity or social aspects such social organization or mating system). There are

a few studies in guppies (Poecilia reticulata) which tested artificial selection on relative brain size in

relation to different traits such as reproduction, gut size, predator behavior and survival (Kotrschal

et al. 2013, 2015a,b; van der Bijl et al. 2015). However, due to fundamental physiological differences

(endotherm vs. ectotherm), we do not necessarily expect the same adaptations in mammals.

Most importantly, however, patterns within species are not necessarily consistent with patterns across

species. For example, from the negative association between brain size and yearly variation in body

mass and thus body fat (representing a trade-off between physiological and cognitive buffering: Held-

stab et al. 2016), one cannot conclude that individuals of a given species who have smaller brains

generally gain more fat. Therefore, large-scale comparative studies are crucial to detect general pat-

terns across species and to understand ultimate evolutionary explanations shaping the evolution brain

size. These patterns are basically represented and tested by the correlated evolution between biological

traits and brain size.

Phylogenetic Comparative Methods

Part of the variation in relative brain size clusters along more closely related species is illustrated in the

phylogeny in Fig. 1.1B. These interspecific similarities can to a lesser or greater extent be attributed

to the common evolutionary history of related species, leading to what is known as phylogenetic de-

pendence or phylogenetic inertia (Nunn 2011). This means that data points on a cross-species scale

are not necessarily independent from one another. Therefore, statistical models testing interspecific

relationships need to take phylogenetic non-independence in account by using phylogenetic compara-

tive methods (Felsenstein 1985). In this thesis, all models testing the effects on and consequences of

brain size increase across species in terms of its patterns of correlated evolution are based on phylo-

genetic least squares regression (PGLS), which accounts for the phylogenetic dependence in the error

structure, i.e. residuals (Grafen 1989).

Regression Analysis to Study Correlated Evolution

The study of patterns of correlated evolution using regression analyses requires some special considera-

tions. A regression analysis in general, whether controlled for phylogeny or not, estimates the effect of

potentially multiple independent x-variables on a dependent y-variable. Since the regression estimates

of x on y, and y on x are not symmetrical, in contrast to a correlation analysis, which trait is set as the

independent and which as the dependent variable is crucial. This is evident by algebraically converting

the formula of the least squares regression model from y to x (e.g. y = 1 + 3x vs. x = −1 +
1

3
y) and

is graphically illustrated in Fig. 1.5. From a biological perspective the symmetry of a relationship

between two traits is also not necessarily given. Let us assume, for example, all species which are

large-brained show strong cognitive buffering during seasonally lean periods. However, not all species
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living in seasonal habitats necessarily show and need a large brain, since there are alternative buffer-

ing strategies such as hibernation. In other words, the variation in trait y may be explained by the

variation in trait x, but not necessarily vice versa. Therefore, in all regression analyses the variables

are deliberately and consistently used as independent and dependent variables. In that respect, if

explaining variation in brain size is of interest, brain size is set as the dependent variable (chapter

3 : brain size vs. opportunities for social learning, chapter 4 : brain size vs. experienced seasonality,

chapter 5 : brain size vs. social and ecological opportunities). However, in case the socio-cognitive

or eco-cognitive consequences are to be explained by variation in brain size, brain size is set as the

independent variable (chapter 2 : niche complexity vs. brain size, chapter 4 : degree of buffering vs.

brain size, chapter 5 : socio- and eco-cognitive consequences vs. brain size).

Figure 1.5: Regression analysis x on y and y on x are not symmetric. Using the same data, the slope β = 0.9 in the left panel is much
steeper than β = 0.1 in the right panel, and the relationships in the two panels are described by two different regression models.
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Synopsis of This Thesis

My dissertation aims to investigate different aspects of interspecific brain size evolution in relation to

both social and ecological factors, taking the cost as well as benefit perspective into consideration.

A comparative phylogenetic approach is used throughout the thesis, and detailed hypotheses as well

as an integrative socio-ecological framework are tested by looking at patterns of correlated evolution

across vertebrate species.

The thesis is divided in three major parts. The first part, consisting of chapters 2 and 3, focuses

mainly on social factors and investigates the framework of the cultural intelligence hypothesis which

predicts that the opportunities for socially mediated learning (time in close proximity to tolerant role

models) are linked to the complexity of foraging skills (foraging niche complexity) and ultimately to

the evolution of brain size. In chapter 2, we test whether in primate and carnivoran species more

time to learn in terms of delayed reproduction and nutritional independence enabled the evolution

into more complex foraging niches, and in turn, whether the complexity of a foraging niche and its

ecological skills are related to brain size. In chapter 3 we test the cultural intelligence hypothesis

across a large sample of birds using the length of post-fledging parent offspring association and the

number of tolerant role models as measures for the degree of opportunities for social learning and look

at patterns of correlated evolution with relative brain size.

The second part, comprising chapter 4, focuses on ecological aspects and combines the cost and

benefit perspective by investigating how brain size evolution is affected by seasonality in non-primate

mammals, and how these patterns compare to the ones in primates (van Woerden et al. 2010, 2012,

2014). Following the methodological approach by previous work in primates (van Woerden 2011, van

Woerden et al. 2010, 2012, 2014), we distinguish between environmental seasonality, represented by

the annual variation in plant productivity, and the actually experienced seasonality, represented by

fluctuations in diet composition compiled from the literature. We look at the cost perspective by test-

ing correlated evolution between experienced seasonality and brain size (expensive brain hypothesis),

and at the benefit perspective, by testing the effect of brain size on the degree to which the experienced

seasonality is buffered relative to the environmental seasonality (cognitive buffer hypothesis).

In the last part of this thesis, chapter 5, we combine a broad range of variables encompassing both

the social and ecological domain (including all factors used to test detailed hypotheses in the previ-

ous chapters) and introduce a new conceptual approach, which systematically distinguishes between

potential selective pressures and direct consequences of enlarged brains. The aim is to integrate the

various hypothesized aspects explaining brain size variation and clarify the ongoing debate about the

main driving forces in the evolution of brain size across primates. Using multivariate statistics and

phylogenetic path analyses we systematically test for the most likely evolutionary directions within

the suggested framework of opportunities and consequences and its relationships with relative brain

size.

And finally, the general discussion (chapter 6) summarizes the findings and their implications of

the previous chapters and brings them into context by discussing them in view of the new conceptual

approach of evolutionary opportunities and consequences. Further, conclusions are drawn concerning

differences between vertebrate lineages and how the findings of this thesis explain the unmatched brain

size in our own lineage.
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Abstract

Animal species that live in complex foraging niches have, in general, improved access to energy-rich

and seasonally stable food sources. Because human food procurement is uniquely complex, we ask

here which conditions may have allowed species to evolve into such complex foraging niches, and

also how niche complexity is related to relative brain size. To do so, we divided niche complexity

into a knowledge-learning and a motor-learning dimension. Using a sample of 78 primate and 65

carnivoran species, we found that two life-history features are consistently correlated with complex

niches: slow, conservative development or provisioning of offspring over extended periods of time. Both

act to buffer low energy yields during periods of learning, and may thus act as limiting factors for the

evolution of complex niches. Our results further showed that the knowledge and motor dimensions of

niche complexity were correlated with pace of development in primates only, and with the length of

provisioning in only carnivorans. Accordingly, in primates, but not carnivorans, living in a complex

foraging niche requires enhanced cognitive abilities, i.e., a large brain. The patterns in these two groups

of mammals show that selection favors evolution into complex niches (in either the knowledge or motor

dimension) in species that either develop more slowly or provision their young for an extended period

of time. These findings help to explain how humans constructed by far the most complex niche: our

ancestors managed to combine slow development (as in other primates) with systematic provisioning

of immatures and even adults (as in carnivorans). This study also provides strong support for the

importance of ecological factors in brain size evolution.
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Introduction

There is extensive variation in the foraging niches different mammal species occupy. Whereas some

foraging niches seem to be simple because they involve no pre-ingestive processing (e.g., those occupied

by grazing ungulates), others appear to be more complex, because obtaining access to food requires

multiple processing steps, executed in the correct order and timed properly (as occupied by many

primates [e.g., Gibson, 1986; Byrne et al., 1993; Gunst et al., 2010]). Living in a complex foraging

niche may bring palpable fitness benefits (Gibson, 1986). First, foods that require a high level of

processing, such as underground storage organs, insects or other animal prey consistently show a high

nutritive content. Second, because extracted foods are often available year-round, species able to

exploit them can live in seasonal environments in which they would otherwise experience a lean sea-

son. Understanding the evolution of complex niches is important for human evolution because, unique

among primates, human hunter-gatherers (as models for ancestral humans), and indeed humans in

general, rely on highly complex forms of extractive foraging and hunting, and so manage to maintain

a relatively stable energy intake in a great variety of different environments (Leonard and Robertson,

1997; Kaplan et al., 2000; Berbesque et al., 2014).

So far, no study has systematically examined the factors that allow species to evolve into such complex

foraging niches. Occupying a complex foraging niche will generally require lengthy periods of learn-

ing, during which failure is common and net yields are low. Since these learning periods are costly

we expect them to be connected to life history features that counterbalance these costs. Indeed, we

recently found that species with a late age at skill competence (the age at which adult-level skill levels

are attained) are those that show one of two enabling factors: post-weaning provisioning or slow, con-

servative development (Schuppli et al.,2012). Both factors work as an energetic buffer against failures

during periods of learning and therefore allow the learning period to be extended (Fig. 2.1). We

also found evidence that species with complex foraging niche(with complexity defined as the level of

processing required) reach adult-level feeding skills later in development than those that live in simpler

niches (Schuppli et al., 2012).

Figure 2.1: Slow development and extended provisioning have been shown to allow for extended periods of learning (later relative age at
skill competence [Schuppli at al., 2012]). Here we ask in Part I whether the same two factors ultimately allow species to evolve into more
complex niches. In Part II we are interested in how niche complexity relates to relative brain size and expect only the knowledge niche,
but not necessarily the motor niche, component to be associated with large relative brain size.
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In this paper, we ask whether foraging-niche complexity coevolved with long periods of learning

or provisioning and with brain size. Such a three-way relationship has often been suggested by an-

thropologists, who proposed that slowly developing species do so because they need time to learn

skills essential to sustain reproduction (Janson and van Schaik, 1993). A recent study in which this

was quantified, however, showed that the time needed to learn these skills limited the duration of

development only in a subset of species, including humans (Schuppli et al., 2012), and that the most

widespread limiting factor is a tradeoff between energy allocation to needs of a growing body and a

growing and differentiating brain. As a result, larger-brained species develop more slowly (Isler and

van Schaik, 2009; Barton and Capellini, 2011) and thus reach maturity at a later age, which is com-

pensated for by their improved adult survival (Isler and van Schaik, 2009; Gonzalez-Lagos et al., 2010).

In humans, this tradeoff is responsible for our highly delayed maturation and the adolescent growth

spurt (Kuzawa et al., 2014), although in humans adult-level skills are reached even later (Kaplan et

al., 2000).

Nonetheless, there are good reasons to assume there is a link between niche complexity and brain size.

First, larger brains are found in species with higher overall diet quality (Fish and Lockwood, 2003)

or those that engage in extensive extractive foraging or tool use (Byrne, 1997; Reader and Laland,

2002; Barton, 2012). Second, larger brains are found in species that can maintain a high and stable

energy intake all year round (van Woerden et al., 2010, 2012, 2014), often as a result of extractive

foraging techniques (Gibson, 1986) or perhaps because of the ability to locate ephemeral food sources

(Milton, 1988). This same argument has also been applied to human evolution. It has repeatedly been

suggested that the need to invent complex foraging techniques in an increasingly seasonal habitatwas a

driving force in the evolution of human intelligence (e.g., Parker and Gibson, 1977; Byrne, 1997; Anton

et al., 2014). However, so far only very few studies have looked at the relation between brain size and

niche complexity, and the ones that have focused on a few taxa only and produced inconsistent results

(Parker and Gibson, 1977; Milton,1981; Gibson, 1986; Walker et al., 2006).

Here, we first examine whether the two factors that allow for extended periods of learning during

development (slow development and post-weaning provisioning) are also a prerequisite for evolving

into a more complex foraging niche (Fig. 2.1). Focusing on the direct link between niche complexity

and provisioning and pace of development allows us to include a much broader sample of species than

in the previous study (Schuppli et al., 2012) where limited data on age of skill competence led to

small sample size. Second, in order to attain a better understanding of the cognitive aspect of niche

complexity, we examine how different aspects of niche complexity relate to brain size. If we find a

relationship between foraging-niche complexity and relative brain size across different species, this may

help to explain why species with complex foraging niches are relatively rare and why humans occupy

by far the most complex niche.

A key decision in a study of foraging-niche complexity is how to define complexity. Previous studies

have ranked the skill requirements of different food types and consistently classified leaves and grasses

as less skill intensive than items, such as fruit, that require some kind of manipulation with hands

or coordinated movements involving both hands and parts of the mouth (teeth, lips). The ingestion

of embedded food items, such as nuts, which require more processing steps is generally considered to

require more complex skills (Dittus, 1977; Kaplan et al., 2000; Johnson and Bock, 2004). All these

studies thus used the amount of processing with hands or hands and mouth required as a measure of

complexity, such that items that need few or no processing steps are rated as less skill-intensive than

items that require a feeding technique composed of several steps of processing. Other studies have

classified specific elements of the diet or certain processing techniques, such as tool use, extractive

foraging or cooperative hunting, as complex since they are based on knowledge and their efficiency im-

proves with causal understanding (Holekamp et al., 1997; Gurven et al., 2006; Lonsdorf, 2006; Gunst
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et al., 2010).

The patterns found in these studies suggest that ecological niche complexity can be divided into two

broad dimensions: knowledge and motor complexity. Knowledge-niche complexity comprises knowing

what to eat, where to look for it (which is not always obvious with embedded foods), which processing

techniques to use, and how to integrate these techniques into an ordered sequence (cf. Barton, 2012).

Since acquiring the requisite knowledge and understanding requires a learning period, we expect to

find that species inhabiting complex knowledge niches show a long period of provisioning and/or a

slow development. Motor-niche complexity, in contrast, encompasses the motor patterns involved

in food acquisition and is consequently determined by the motor skills needed in each single step

of food processing. We expect motor-niche complexity to be based more on practice than cognitive

understanding. Unfortunately, it will be difficult to clearly distinguish between the two complexity

dimensions in all cases since there may be substantial overlap between them.

In this study, we systematically test on a large comparative data set how foraging-niche complexity

is related to the two life-history pathways, pace of development and the length of provisioning (Part

I) and then, to relative brain size (Part II). We do this in two mammalian lineages: primates and

carnivorans. For the life-history pathways, we expect that the pace of development or the length of

provisioning underwent correlated evolution with niche complexity, such that species living in more

complex foraging niches are characterized by slower development or extended provisioning. We are

also interested in how strongly each of the two different dimensions of niche complexity (knowledge and

motor) is correlated with development or provisioning. For the link between foraging niche complexity

and cognition, we expect that knowledge-niche complexity (comprising knowledge and understanding

of a foraging niche) is positively correlated with relative brain size. However, the prediction for the

relation between brain size and motor niche is less straightforward. On the one hand, we assume the

motor dimension to require extensive practice, but not necessarily understanding and knowledge, and

therefore not to rely on enhanced cognition. On the other hand, practice itself as well as sensory-

motor processes involved in motor skills are expected to have neural correlates, which would suggest

a positive correlation between brain size and motor-niche complexity. In other words, we hypothesize

a large brain to be an inevitable prerequisite for species living in a complex knowledge niche but not

necessarily for those living in a complex motor niche.
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Material and Methods

Data sets

We compiled data sets on the different elements of niche complexity, life history parameters, brain- and

body size for 78 nonhuman primate and 65 carnivoran species. Life history, provisioning, brain and

body size data were retrieved from established databases (K. Isler, S. M. Graber and S. A. Heldstab,

unpublished data; Isler and van Schaik, 2009, 2012; van Woerden et al., 2014). Data on the different

elements of niche complexity were taken from the published literature (see Supplementary Online

Material [SOM]). We use measurements on overall brain size as this has been shown to be a very

good predictor of cognitive abilities (Lefebvre et al., 2004; Deaner et al., 2007) and is a very broadly

available measurement in mammals.

For motor-niche complexity, we divided all species into three complexity categories according to the

level of processing involved in food acquisition (Table 2.1). For grazing and folivory, food acquisition

generally comprises only one step (bite), whereas for frugivory and insectivory, two basic steps are

almost always required (e.g., pick and bite, or peel and bite, or bite and spit), and for extractive

foraging and catching mobile prey, three or more basic steps are required (e.g., extract and bite and

spit, or catch and kill and bite). As expected, this complexity ranking roughly has a cumulative

(Guttman) scaling property, such that species in category 2 or 3 mostly also exhibit elements of

category 1, or 1 and 2, respectively.

For knowledge-niche complexity we determined four different cognitively challenging elements found

in primates and carnivorans: cooperative hunting, high diet breadth, extractive foraging and tool use.

These elements were coded as binary variables, except for diet breadth, where we counted how many

different classes of food types a species eats. We also compiled a knowledge-niche complexity score

by summing the number of cognitively challenging elements for a certain species, assuming that the

more knowledge elements there are, the more complex the overall knowledge niche should be. For the

knowledge score we dichotomized diet breadth into a binary variable by assigning one-two different

classes of food types to 0 (low), and three and more different food types to 1 (high). In primates, the

observed additive knowledge-niche complexity scores ranged from 0 to 4, whereas in carnivorans they

ranged from 0 to 3 (Table 2.2).

Table 2.1: Motor-niche complexity categories.

Motor-niche complexity Niche Level of processing

1 folivory and grazing no processing

2 frugivory and insectivory low-level processing

3 extractive foraging and mobile prey catching high-level processing
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Table 2.2: Distribution of the different knowledge-niche complexity elements and distribution of the additive knowledge-niche complexity
score in primates and carnivorans.

Cognitive elements Primates Carnivorans

Number of species

Cooperative hunting 1 6

Diet breadth low: 22; high: 56 low: 7; high: 58

Extractive foraging 32 26

Tool use 12 2

Observed knowledge score range

Variables

To approximate the pace of development we used female age at first reproduction (AFR), controlled for

female body mass through multiple regression analysis (see below). The relative length of provisioning

was approximated by the total number of days offspring are provisioned, again corrected for body mass.

Since there is no post-weaning provisioning in most primate species, we took weaning age as a measure

for the length of provisioning for all species except the cooperatively breeding marmosets (Callithrix

jacchus).

Analysis

All analyses and plots were done using the R programming language (R development Core Team,

2012). More closely related species, in general, show greater similarities in traits because of their

shared evolutionary history (Nunn, 2011). To correct for phylogenetic non-independence of the data

we used phylogenetic least-squares (PGLS) in the case of multistate ordinal response variables (as

justified by the results of Matthews et al., 2010), as implemented in the package caper (Orme, 2011),

and phylogenetic logistic regressions (PLR) in the case of binary response variables, as implemented

in the package phylolm (Ho and Ane, 2014). The analyses testing the effects on the two foraging niche

dimensions were all controlled for body mass (by including it as a factor in the regression models)

to ensure that the effects were independent of body mass. In other words, throughout this study we

consider life-history traits and brain size relative to bodymass. Residuals of the models, as shown

in the graphs, were used for illustrative purposes only. We also controlled for additional potentially

confounding variables and provided these analyses in the SOM (Tables S2-S4).

In PGLS, the phylogenetic scaling parameter lambda (λ) (Pagel, 1999), a measure of phylogenetic

signal in the model residuals, was estimated based on maximum likelihood as implemented in caper,

whereas the other two branch-length transformation factors, delta and kappa, were fixed at 1.

The PLR in phylolm automatically estimates alpha (α), the phylogenetic signal for a binary trait. In

contrast to λ, α is based on a Markov process and larger values correspond to a weaker phylogenetic

signal (Ives and Garland, 2010). In order to reach evenly distributed residuals around zero, all con-

tinuous variables were log-transformed. To assess statistical significance, a 5% level was used. The

phylogenetic trees used for the analyses were retrieved and compiled from the published literature

(Bininda-Emonds et al., 2007; Perelman et al., 2011). A nexus file was manually extracted from the

information provided in Perelman et al. (2011) and is provided in the SOM.
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Data classification

We used the published literature to assign species to the various niche categories. However, this was

not always straightforward since different sources used different classifications. We therefore repeated

our analyses using various classifications, but this did not change our results, which we therefore

consider robust. The classification presented here is conservative and in most cases not in favor of our

predictions (e.g., Gorilla gorilla was not classified as an extractive forager whereas Callithrix jacchus

was). To further test the robustness of our results, we also dichotomized all our ordinal dependent

variables since in most cases this led to more balanced data distributions. This too, did not change

the results. Our complete data sets with all classifications and their sources, are provided in the SOM

(Table S1).
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Results

Part I - Life history pathways and foraging-niche complexity

Motor-niche complexity in primates we found a significant positive effect of the pace of development on

motor-niche complexity but no significant effect of the length of provisioning (approximately weaning

age; Table 2.3a; Fig. 2.2). For carnivorans, in contrast, we found a significant positive effect of the

length of provisioning on motor-niche complexity but no significant effect of the pace of development

(Table 2.3b; Fig. 2.2).

Figure 2.2: Relationships between pace of development (age at first reproduction corrected for body mass) and motor-niche complexity
for primates and between length of provisioning (corrected for body mass) and motor-niche complexity for carnivorans.

Table 2.3: Phylogenetic least-square multiple regression models with motor-niche complexity as the response variable and body mass, AFR
and length of provisioning as the predictor variables, analyzed separately for the a) 78 primate and b) 65 carnivoran species. Statistical
significance (p<0.05) is indicated by bold font.

a) Primates N=78

dependent variable R2 phylogenetic signal predictor variables estimate std. error p-value

motor-niche complexity 0.22 λ = 0.87

log body -0.334 0.104 0.002

log AFR 0.988 0.236 <0.001

log provisioning -0.012 0.139 0.930

b) Carnivorans N=65

dependent variable R2 phylogenetic signal predictor variables estimate std. error p-value

motor-niche complexity 0.16 λ = 0.78

log body -0.123 0.088 0.168

log AFR -0.228 0.203 0.264

log provisioning 0.553 0.173 0.002
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Knowledge-niche complexity. For the overall knowledgeniche complexity score (summed number

of cognitively challenging elements) we found the same pattern as for motor niche complexity: in

primates, the knowledge-niche complexity score showed a significantly positive correlation with the

pace of development, whereas in carnivorans it showed a significantly positive correlation with the

length of provisioning (Table 2.4a,b; Fig. 2.3).

Figure 2.3: Relationships between pace of development (age at first reproduction corrected for body mass) or provisioning(corrected for
body mass) and the additive knowledge niche complexity score in primates and carnivorans.

Table 2.4: Phylogenetic least-square multiple regression models with the additive knowledge-niche complexity score as response variable
and body mass, AFR and length of provisioning as predictor variables analyzed separately for the a) 78 primate and b) 65 carnivoran
species. Statistical significance (p<0.05) is indicated by bold font.

a) Primates N=78

dependent variable R2 phylogenetic signal predictor variables estimate std. error p-value

knowledge-niche complexity 0.41 λ = 0.00

log body -0.767 0.308 0.015

log AFR 3.701 0.764 <0.001

log provisioning 0.122 0.478 0.800

b) Carnivorans N=65

dependent variable R2 phylogenetic signal predictor variables estimate std. error p-value

knowledge-niche complexity 0.15 λ = 0.25

log body -0.080 0.125 0.526

log AFR -0.452 0.284 0.118

log provisioning 0.790 0.284 0.007
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Examining the different elements of knowledge-niche complexity separately, we found that in pri-

mates the pace of development had a significantly positive effect on diet breadth, extractive foraging

and tool use. Since chimpanzees are the only cooperatively hunting primate species in our data set,

we could not evaluate the effect of cooperative hunting statistically, but following our expectations,

chimpanzees have a relatively slow pace of development (SOM Table S2a; Fig. S1).

In carnivorans, the length of provisioning had a significant positive effect on diet breadth. For co-

operative hunting, therewas a weak trend in the predicted direction whereas for extractive foraging

no effect was apparent. For tool use, the small sample size did not allow for statistical testing in

carnivorans (SOM Table S2b; Fig. S2).

In primates we found that motor-niche complexity and the additive knowledge-niche complexity score

were highly correlated (PGLS: p < 0.001, λ = 0.50). However, no such correlationwas found in car-

nivorans (PGLS: p = 0.35, λ = 0.16). In order to exclude a spurious effect of pace of development

or provisioning on the knowledge-niche complexity score in primates, we included motor-niche com-

plexity as a factor into our analysis of the predictors of the knowledge-niche complexity. We found

that the effect of the pace of development on the knowledge-niche complexity score still held when we

controlled for motor-niche complexity (primates: p (log AFR) = 0.038, p (motor complexity) < 0.001,

λ = 0; see SOM Table S2a). Detailed statistics on the regression models and further analyses are also

shown in the SOM (Table S2 a,b).

Part II - Brain size and foraging-niche complexity

Motor-niche complexity. In carnivorans, there is no significant correlation between motor-niche com-

plexity and brain size (Table 2.5b, Fig. 2.4). Adding the length of provisioning as an additional

factor did not change the result (SOM Table S3b). In primates, in contrast, this correlation is signifi-

cant (Table 2.5a; Fig. 2.4). However, the correlation between brain size and motor niche complexity

disappears if we control for AFR (SOM Table S3a).

Figure 2.4: Relationships between relative brain size (corrected for body mass) and motor-niche complexity for primates and carnivorans.
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Table 2.5: Phylogenetic least-square multiple regression models with motor-niche complexity as the response variable and body mass
and brain size as the predictor variables, analyzed separately for the a) 78 primate and b) 65 carnivoran species. Statistical significance
(p<0.05) is indicated by bold font.

a) Primates N=78

dependent variable R2 phylogenetic signal predictor variables estimate std. error p-value

motor-niche complexity 0.12 λ = 0.66
log body -0.715 0.224 0.002

log brain 0.880 0.294 0.004

b) Carnivorans N=65

dependent variable R2 phylogenetic signal predictor variables estimate std. error p-value

motor-niche complexity 0.00 λ = 0.87
log body 0.051 0.169 0.761

log brain -0.080 0.264 0.764

Knowledge-niche complexity. In primates, the additive knowledge-niche complexity score showed

a significant positive correlation with brain size (Table 2.6a; Fig. 2.5). In fact, the PGLS regression

continued to show a significant correlation between brain size and the knowledge-niche complexity

score even after additionally controlling for possible confounding effects of motorniche complexity or

for AFR (SOM Table S4a). These results are consistent with our hypothesis that predicted that

species living in complex knowledge- niches have bigger brain sizes. When analyzing the different

cognitively challenging elements separately and controlling for the motor-niche dimension, only tool

use showed a significant association with relative brain size (SOM Table S4a, Fig. S3). Also, being

the only cooperatively hunting primate species in our data set, chimpanzees have a relatively large

brain.

For carnivorans, in contrast, no such link between knowledgeniche complexity and relative brain size

was found. Neither the additive knowledge-niche complexity score, nor the regression models of the

individual cognitive elements showed evidence for a correlation with brain size (Table 2.6b, Fig. 2.5;

SOM Table S4b, Fig. S4). Detailed statistics of the regression models of all additional analyses are

also shown in the SOM (Table S4a,b).

Figure 2.5: Relationships between relative brain size (corrected for body mass) and additive knowledge-niche complexity score for primates
and carnivorans.
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Table 2.6: Phylogenetic least-square multiple regression models with the additive knowledge-niche complexity score as response variable
and body mass and brain size as predictor variables analyzed separately for the a) 78 primate and b) 65 carnivoran species. Statistical
significance (p<0.05) is indicated by bold font.

a) Primates N=78

dependent variable R2 phylogenetic signal predictor variables estimate std. error p-value

knowledge-niche complexity 0.41 λ = 0.00
log body -2.196 0.538 <0.001

log brain 3.600 0.654 <0.001

b) Carnivorans N=65

dependent variable R2 phylogenetic signal predictor variables estimate std. error p-value

knowledge-niche complexity 0.02 λ = 0.17
log body 0.185 0.254 0.471

log brain -0.213 0.387 0.584
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Discussion

Part I - Life history pathways to complex foraging niches

In the first part, we found that two life history features are consistently correlated with both dimensions

of niche complexity: in primates, slow, conservative development, and in carnivorans, provisioning over

extended periods of time. Because newly weaned mammals of species living in complex foraging niches

generally have not yet reached adult-level feeding skills (Schuppli et al., 2012), both features may help

to provide an energetic buffer during periods of learning. Energy deficits caused by failures (and

therefore lower net energy intake) during the period of learning may have severe consequences for

the still growing juvenile individual because they carry the risk of brain starvation (Janson and van

Schaik, 1993; Isler and van Schaik, 2009; Kuzawa et al., 2014). Post-weaning provisioning suppresses

these energy deficits not just because it provides the immature animal with energy but also because

it reduces the immature animal’s required foraging time, and consequently allows it to allocate more

time to practicing. Similarly, slow, conservative development reduces the risk of brain starvation and

provides the immature animal with a longer prereproductive period during which it can afford to

have the reduced foraging efficiency caused by learning. Because reproduction would compete for

energy with maintenance, it is postponed until adequate skill levels have been reached. Thus, both

mechanisms provide species with enhanced opportunities to learn after weaning. In support of this

interpretation, adult-level feeding skills are reached at a relatively later point during ontogeny in those

species that get provisioned longer or show an overall slower development (Schuppli et al., 2012).

When we divided niche complexity into a knowledge and a motor dimension we found consistent

patterns for both dimensions: a positive correlation with the length of provisioning in carnivorans,

and a positive correlation with the pace of development in primates. In terms of motor complexity,

this clear finding is in line with our initial prediction that complexmotor patterns need to be practiced

over extended periods of time. Species that live in complex motor niches often do not rely exclusively

on food requiring complex motor patterns but also forage on less skillintense food items. As one

would expect, it has been observed that in these species the different skills ontogenetically develop

in the order of their complexity level, as in Japanese monkeys (Macaca fuscata [Nakayama et al.,

1999; Hanya, 2003]), or in the order of moving from small to large prey in carnivorans and primates

(Watt, 1993; Holekamp et al., 1997; Stone, 2006). Furthermore, complex foraging elements seem to be

practiced throughout ontogeny (e.g. beach hunting in the bottlenose dolphin, Tursiops sp. [Sargeant

et al., 2005]).

In terms of knowledge-niche complexity, we found similar correlations for most of the a priori defined

cognitively demanding elements (cooperative hunting, diet breadth, extractive foraging and tool use).

This finding confirms our initial prediction that acquiring knowledge and understanding requires a

long period of learning. In line with our finding, previous studies have shown that all cognitively

demanding elements are mastered relatively late in development: tool use in great apes (Lonsdorf,

2006; Meulman and van Schaik, 2013), cooperative hunting in different carnivorans and chimpanzees

(Holekamp et al., 1997; Boesch, 2002; Sand et al., 2006) and extractive foraging in various primates

(Johnson and Bock, 2004; Gunst et al., 2008; Schuppli et al., 2012).

Knowledge- and motor-niche complexity inevitably overlap since executing one step in the chain of

processing steps needed for food acquisition automatically also means being able to coordinate and

time all the previous steps needed to get to this step, which has been proposed to explain correlations

between brain size measures and tool use (Barton, 2012). Indeed, some of the cognitively demanding

elements we used are based on complex, multistep motor patterns. This is especially true for extractive

foraging, where it is hard to determine to what extent the observed positive correlation between
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developmental pace and extractive foraging in primates is based on complex motor patterns that

need to be practiced over an extended period of time rather than on cognitive understanding and,

therefore, time to learn. This argument predicts a correlation between motor complexity and the

knowledge-niche complexity score, which was indeed found in primates. However, when corrected for

motor complexity, we still found an independent effect of the pace of development on knowledge-niche

complexity. In order to distinguish properly between the motor and knowledge complexity of foraging

niches, we will use the relationship of the two dimensions of the foraging- niche with brain size.

Part II - Brain size and foraging-niche complexity

Consistent with our initial prediction, there was no relationship between brain size and the motor

dimension of niche complexity in carnivorans. In primates, in contrast, brain size was positively

correlated with motor-niche complexity, but after controlling for AFR, this correlation disappeared.

Age at first reproduction has been shown to be associated with both brain size (Harvey and Clutton-

Brock, 1985; Ross and Jones, 1999; Barrickman et al., 2008) and niche complexity (see results Part I).

One interpretation, therefore, is that the correlation between brain size and motor-niche complexity

is spurious, because it is, in fact, driven by the duration of development (as in carnivorans, where is

driven by the length of provisioning). Alternatively, an extended period of development is indeed the

mechanism that allows for the development of a large brain (Barton and Capellini, 2011), which in

turn determines motor-niche complexity. Thus, the correlation between motor complexity and brain

size in primates could reflect the neural correlates of practice itself or of the sensory motor processes

involved in motor skills. At present, we cannot disentangle these possibilities, but the findings imply

that complexity in the motor dimension, at least in carnivorans, does not necessarily require cognitive

understanding or knowledge but rather training and practice, or, in other words, time. Both life

history pathways (extended provisioning and slow development) provide immature animals of both

taxa with extensive practice time (see Part I of Discussion).

Also in agreement with our prediction, the analyses in primates provided strong evidence that large

brains are associated with a higher complexity in the knowledge dimension of the niche, even after

controlling for the effects of the motor-niche. Moreover, in Figure 2.5, which plots knowledge-niche

complexity versus relative brain size, all species cluster in the lower-right corner. This shows that,

although large-brained species may live in either simple or complex knowledge niches, small-brained

species are never found in niches with high knowledge complexity. This finding suggests that living in

a foraging-niche with high knowledge complexity is indeed cognitively challenging for a primate. These

findings build on work by Barton (2012) and Reader and Laland (2002), who have found that larger

brains in primates are associated with enhanced foraging skills and higher frequency of innovation

and social learning, usually in the ecological domain. Overall, therefore, it is the cumulative effect

of different cognitively challenging elements of a species’s niche that underlies the correlation with

relative brain size, and thus, cognitive abilities. In fact, the models for the separate elements of

the knowledge-niche complexity score do not show strong links with brain size. The effects of brain

size disappear as soon as we control for the motor component, except for tool use (see SOM for the

different models). Together with the findings from Part I, this implies that neither a diverse diet nor

extractive foraging alone is cognitively so challenging that it requires enlarged brain size. However, the

combination of all these knowledge elements together does require enhanced cognition in primates.

The coevolution between niche complexity, brain size and developmental slowdown in primates is

consistent with the needing-to-learn hypothesis, which states that the age of first reproduction is

determined by the number and complexity of skills that have to be learned for adult success (Janson

and van Schaik, 1993). However, these findings are also consistent with the idea that larger brains
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are inevitably connected to extended periods of growth and maturation, due to the developmental

costs imposed by growing and maturing a large brain (Barton and Capellini, 2011). The two ideas are

related. The slowdown caused by energy tradeoffs creates time to learn more complex skills.

In contrast to primates, brain size has no effect at all on knowledge foraging-niche complexity in

carnivorans, neither for the separate a priori defined elements nor for the additive knowledge-niche

complexity score. In other words, carnivorans do not need enhanced cognitive abilities to master

these elements of their foraging-niche, even though it was found that in carnivorans, diet type is

correlated with brain size (Swanson et al., 2012). Together with the fact that most carnivoran species

are provisioned as immature animals and the finding that higher knowledge-niche complexity is indeed

associated with extended periods of provisioning, this result suggests that, in contrast to primates,

successful hunting and foraging in carnivorans is built on intensive practice rather than increased

knowledge. Whereas in primates, a slow, conservative development provides not only time to learn

but also allows for the development of a large brain and therefore enhanced cognition, carnivorans

use a more canalized pathway where provisioning buffers them from the consequences of their own

incompetence and so allows them to practice specific skills until they are mastered.

Implications for general mammalian and hominin evolution

We have shown that primates and carnivorans use distinct pathways in order to meet the energetic

and time requirements imposed by complex foraging niches: extended periods of provisioning in car-

nivorans versus a slower overall pace of development in primates. First, this pattern of correlated

evolution also implies that only those primate lineages that could somehow afford to develop more

slowly and only those carnivoran lineages that could afford longer post-weaning provisioning were able

to evolve into a more complex foraging-niche. Thus, each species probably reaches a foraging-niche

complexity where the benefits of having this more complex niche (probably especially in terms of

starvation avoidance and reduced competition with other species) are balanced by the demographic

costs of reduced growth rate (primates) or reproduction (carnivorans).

Our study also showed that, for primates, living in a complex niche is correlated with larger brains

and therefore probably requires enhanced cognitive abilities. Again, a scenario of correlated evolution

is most plausible: increases in brain size allow species to exploit more complex niches (and therefore

qualitatively better resources), which will in the end provide them with the energy needed to support

further increases in brain size. The absence of provisioning in the vast majority of all primate species,

but the presence of systematic pre- and post-weaning provisioning in many carnivoran species is most

likely based on a systematic difference in the feeding biology of the two taxa. Most carnivorans are

dependent on food items that are large and difficult to process but energy-rich. Thus, from an en-

ergetic perspective, provisioning of food is more effective for them compared to primates, which rely

on smaller food items that are generally more easily acquired, albeit not necessarily processed. The

observed differences between the two taxa, therefore, seems to be an example of constrained evolution

where preexisting life history characteristics predispose species to evolve in certain directions (McK-

itrick, 1993; Futuyma, 1998).

Across mammals, based on our findings, we predict that opportunities for provisioning or opportuni-

ties for low mortality act as limiting factors for the possible evolution of complex niches.We therefore

expect that species with high extrinsic mortality (e.g., due to high predation risk) that at the same

time rely on resources that cannot be shared will be prevented from evolving into complex niches.

When applied to human hunter-gatherers, our framework might not only explain the general pattern

observed across mammals but also the extreme case of the evolution of human life history and intel-

ligence. Human hunter-gatherers occupy by far the most complex motor- and knowledge-niche of all
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mammals. Thus, hunter-gatherers have a very broad diet composed of food items that require special

knowledge to acquire and intensive processing: they rely heavily on extractive foraging, tool use, and

cooperative hunting (Kaplan et al., 2000). Accordingly, modern foragers reach adult-level proficiency

for the more skill-intensive elements of the diet strikingly late in development and only after years of

practice (Kaplan et al., 2000; Gurven et al., 2006).

Obviously, when a lineage shares food and has slow development, evolving into a complex knowledge-

niche is more likely. Thus, the most likely explanation for the evolution of a foragingniche complexity

far beyond the range of other mammals is that our ancestors, uniquely, combined very slow devel-

opment and systematic provisioning of immature animals and even adults. With the adoption of

systematic hunting, beginning approximately 2.5 million years ago (Dominguez-Rodrigo et al., 2010;

Ferraro et al., 2013), our hominin ancestors began to combine a slow primate life history with a

carnivoran-like niche. Meat consumption is thought to have provided the necessary energy surplus for

the drastic brain size increase and coincides with enhanced technology and social adaptations such as

increased levels of cooperation (Milton,1999; Isler and van Schaik, 2012; Ferraro et al., 2013). As big

game hunters, early hominins relied on big, energy rich but difficult to process food items which, as

in the carnivoran lineage, most likely favored the evolution of prolonged periods of provisioning. This

extended provisioning, together with a cooperative breeding system, then provided immature animals

with additional time and opportunities to learn ever more complex ecological skills, which allowed the

evolution of the unique, technologically driven human niche (Schuppli et al., 2012).

Our study provides support for the view that an ecological challenge, the complexity of the foraging-

niche, has shaped the life history and intelligence of the primate lineage. It thus supports the broader

hypothesis that environmental factors have played a crucial role in the evolution of life history and

intelligence. We did not test social effects on brain size evolution in this study but it is very likely

that some of the remaining variance in our data can be explained by social variables, such as group

size, as proposed by the social brain hypothesis (Milton, 1988; Dunbar, 1998; Barton, 2012). This

general framework is in line with theories suggesting that the coevolution between complex foraging

techniques and energetic needs in an increasingly seasonal environment was a crucial element during

the evolution of human intelligence (Parker and Gibson, 1977; Byrne, 1997).
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Supplementary Material

Data collection and classification

Data on the different elements of foraging niche complexity were retrieved from various sources, many

of them complied in the Animal Diversity Web (Myers et al., 1995).

In primates, for motor-niche complexity and diet breadth we relied on various references given in

Table S1. Motor-niche complexity reflects the number of processing steps involved in food acquisi-

tion from tearing an item off its substrate until ingestion and is not to be confused with fine hand

manipulation. As an example, the gelada baboon (Theropithecus gelada) was classified as level 1 of

motor-niche complexity as it mainly relies on grazing-like processing, namely pulling grass and tubers

out of the soil and bringing them directly to the mouth without any further intermediate processing

steps. This is in contrast to most frugivorous species, which rely on additional processing steps such

as peeling or core removal, which are thus classified as level 2.

For extractive foraging we followed the compilation of Jaeggi and van Schaik (2011) who used a three

point scale which we, in order to make it consistent with the carnivoran data, dichotomized into a

binary variable (absent/ present), whereby 1 and 2 by Jaeggi and van Schaik (2011) were coded as

present. Species in our data set that were missing in the Jaeggi and van Schaik (2011) compilation

were classified according to their definition which is originally based on Gibson (1986), defining ex-

tractive foraging as ”feeding on foods that must first be removed from other matrices in which they are

embedded or encased” (Gibson, 1986, p 96). Extractive foraging was counted as present only in cases

where the extracted food made up a non-incidental and considerable part in a species’ diet. Species

relying on tubers and roots were classified as extractive foragers in cases where these are actively

excavated, whereas pulling out plants with their roots such as grasses or small scrubs was not counted

as such.

For tool use we based our classification on Bentley-Condit and Smith (2010), whereby species with

tool use in captivity only, in a non-food context only or for which observations were limited to a single

example were coded as non-tool users. For species that were not available in Bentley-Condit and

Smith (2010), we found no evidence for regular tool use in the literature and we therefore classified

them as non-tool-users.

In carnivorans, the classifications into motor-niche complexity, extractive foraging and diet breadth

were also based on various references given in Table S1. At the lowest level of motor-niche complexity

(level 1) we classified the giant panda (Ailuropoda melanoleuca) and the aardwolf (Proteles cristata),

as ripping off leaves or licking termites off surfaces comprises a single simple processing step. Species

that feed predominantly on insects and fruits, such as the European badger (Meles meles) or the sloth

bear (Melursus ursinus) were classified as level 2 since there is a limited amount of processing involved.

All carnivorans hunting for mobile prey (excluding insects) were assigned the highest complexity level

(level 3) since this prey needs to be pursued, caught, killed and eventually dissembled before ingestion.

We classified carnivoran species as extractive foragers if they cracked bones to access marrow (e.g.,

spotted hyenas, Crocuta crocuta) or broke open hard shells (including eggs) or prey with exoskeletons

(e.g., sea otter, Enhydra lutris).

For tool use we relied on the classification of Bentley-Condit and Smith (2010), following the same

rules as described for primates (see above) and for cooperative hunting on Smith et al. (2012). In

carnivorans, for species that were missing in these compilations, literature research showed no evidence

for the presence of tool use and they were therefore classified as non-tool users.
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In total, data on niche complexity could be retrieved for 65 species of fissiped Carnivora and 78

species of Primates. For these species, morphological and life history data (endocranial volume and

body mass of adult females, age at first reproduction and length of provisioning) were taken from pub-

lished compilations (Isler and van Schaik, 2009, 2012; van Woerden et al., 2014) and complemented

by unpublished data compiled from the literature by K. Isler, S. M. Graber and S. A. Heldstab. Addi-

tional endocranial volumes (ECV) of adult female museum specimens were measured by S. M. Graber

and S. A. Heldstab using glass beads.
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Additional Results

In order to get a more detailed picture, we analyzed the correlations of the two life history factors and

brain size with the different knowledge-niche elements separately. Also, we additionally controlled for

possibly confounding variables to ascertain the robustness of all our results.

Life history pathways and foraging-niche complexity

When looking at the effects of the two life-history parameters on the different knowledge-niche ele-

ments separately, we found that in primates the age at first reproduction was significantly positively

correlated with diet breadth, extractive foraging and tool use. Also, chimpanzees as the only cooper-

atively hunting primate species in our data set have a relatively late age at first reproduction (Table

S2a; Fig. S1).

In carnivorans, we found a significant positive correlation between the length of provisioning and

diet breadth, and a trend for a positive correlation between the length of provisioning and cooperative

hunting. For extractive foraging, no effect was apparent, whereas for tool use, sample size was too

small for statistical testing (Table S2b; Fig. S2).

Since we found a positive correlation between knowledge-niche complexity and motor-niche complexity

in primates (but not in carnivorans), we added motor-niche complexity as a factor in our regression

models for primates, in order to control for any possible confounding effects. However, this did not

change the direction of the effect or the significance level of the results (Table S2a).
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Table S2.Relation between life history and knowledge-niche elements as well as controlling for possible confounding effect of motor-
niche complexity. Phylogenetic least-square (PGLS) and phylogenetic logistic (PLR) multiple regression models with the knowledge-niche
elements (diet breadth, extractive foraging and tool use) and the additive knowledge-niche complexity score as response variables and body
mass, age at first reproduction (AFR), length of provisioning and motor-niche complexity as predictor variables for the 78 primate species
(a). Phylogenetic least-square and phylogenetic logistic multiple regression models with the knowledge-niche elements (diet breadth,
extractive foraging and cooperative hunting) as response variables and body mass, age at first reproduction and length of provisioning as
predictor variables for the 65 carnivoran species (b). Statistical significance (p<0.05) is indicated by bold font.

a) Primates N=78

dependent variable method R2 phylogenetic signal predictor variables estimate std. error p-value

diet breadth PGLS

0.15 λ = 0.21

log body -0.318 0.440 0.472

log AFR 3.394 1.090 0.003

log provisioning -0.819 0.671 0.226

0.19 λ = 0.29

log body -0.068 0.441 0.878

motor-niche complexity 0.571 0.228 0.014

log AFR 1.619 1.097 0.144

extractive foraging PLR

- α = 0.07

log body -1.166 0.497 0.019

log AFR 11.065 3.089 0.000

log provisioning -0.185 1.468 0.900

- α = 0.01

log body 1.535 0.905 0.090

motor-niche complexity 10.190 3.862 0.008

log AFR 6.804 6.453 0.292

tool use PLR

- α = 0.01

log body -0.596 0.482 0.216

log AFR 11.693 3.666 0.001

log provisioning -0.623 1.228 0.612

- α = 0.0002

log body 0.031 0.155 0.842

motor-niche complexity 0.768 0.264 0.004

log AFR 2.184 1.125 0.052

knowledge-niche compl. PGLS 0.73 λ = 0.00

log body 0.229 0.222 0.305

motor-niche complexity 1.109 0.117 <0.001

Log AFR 1.142 0.541 0.038

b) Carnivorans N=65

dependent variable method R2 phylogenetic signal predictor variables estimate std. error p-value

diet breadth PGLS 0.12 λ = 0.07

log body -0.137 0.114 0.233

log AFR -0.407 0.251 0.110

log provisioning 0.587 0.273 0.035

extractive foraging PLR - α = 0.07

log body 0.006 0.361 0.987

log AFR -0.535 0.831 0.520

log provisioning 0.273 0.794 0.732

cooperative hunting PLR - α = 0.01

log body 3.310 2.620 0.207

log AFR -15.492 7.779 0.046

log provisioning 8.899 4.986 0.074
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Figure S1. Relationships between pace of development (age at first reproduction corrected for body mass) and the different elements of
knowledge-niche complexity in primates.
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Figure S2. Relationships between length of provisioning (corrected for body mass) and the different elements of knowledge-niche complexity
in carnivorans.

PhD thesis, Sereina M. Graber, 2017 50



Social and Ecological Aspects of Brain Size Evolution
Chapter 2. Life history, cognition and the evolution of complex foraging niches

Brain size and foraging-niche complexity

In primates, age of fist reproduction (AFR) has been shown to be correlated with both brain size

(Harvey and Clutton-Brock, 1995; Ross and Jones, 1999; Barrickman et al., 2008) and motor-niche

complexity (see results Part I). We therefore repeated our analysis on the effects of brain size on

motor-niche complexity controlling for AFR by adding it as a factor to the regression model. The

effect of brain size on motor-niche complexity then disappeared (Table S3a). This suggests that the

correlation between brain size and motor-niche complexity in primates is spurious and driven by the

duration of development. Alternatively, this result can be interpreted as evidence that an extended

period of development is indeed the mechanism that allows for the development of a large brains

(Barton and Capellini, 2011). In carnivorans, adding the length of provisioning as an additional factor

did not change the results (Table S3b).

When looking at the effects of brain size on the different knowledge-niche elements separately, we

found that in primates, diet breadth, extractive foraging and tool use were significantly correlated with

brain size. In line with our prediction, as the only cooperatively hunting primates, chimpanzees are

highly enzephalized (Table S4a). Controlling for possible confounding effects of motor-niche complex-

ity (since motor- and knowledge-niche complexity have been shown to be correlated in primates) did

not affect the correlation between brain size and the overall knowledge, but of the individual knowl-

edge elements only tool use remained significantly correlated with brain size (Table S4a). Adding

AFR as an additional factor to the regression model (since it has been shown to be correlated with

both brain size (Harvey and Clutton-Brock, 1995; Ross and Jones, 1999; Barrickman et al., 2008) and

knowledge-niche complexity (see results Part I) also did not affect the correlation between the additive

knowledge-niche complexity score and brain size. All correlations between the individual knowledge

elements and brain size remained significant with the exception of diet breadth (Table S4a, Fig. S3).

In carnivorans, in line with the absence of a correlation between the overall knowledge-niche com-

plexity score and brain size, none of the knowledge-niche elements was correlated with brain size

either (Table S4b, Fig. S4). Adding the length of provisioning as an additional factor to the model

(since it has been shown to be correlated with knowledge-niche complexity in carnivorans) mostly did

not change the results. Only in the case of cooperative hunting did a significant positive correlation

with brain size emerge. (Table S4b).
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Table S3. Relation between brain size and motor-niche complexity - controlled for age at first reproduction or length of provisioning.
Phylogenetic least-square (PGLS) multiple regression models with motor-niche complexity as response variable and body mass, age at
first reproduction (AFR) and brain size as predictor variables for the 78 primate species (a). Phylogenetic least-square multiple regression
models with motor-niche complexity as response variable and body mass, length of provisioning and brain size as predictor variables for
the 65 carnivoran species (b). Statistical significance (p<0.05) is indicated by bold font.

a) Primates N=78

dependent variable R2 phylogenetic signal predictor variables estimate std. error p-value

motor-niche complexity 0.22 λ = 0.83

log body -0.523 0.229 0.025

log AFR 0.897 0.246 <0.001

log brain 0.287 0.331 0.389

b) Carnivorans N=65

dependent variable R2 phylogenetic signal predictor variables estimate std. error p-value

motor-niche complexity 0.15 λ = 0.80

log body -0.083 0.164 0.616

log provisioning 0.571 0.174 0.002

log brain -0.164 0.250 0.515
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Table S4. Relation between brain size and knowledge-niche elements - controlled for age at first reproduction, length of provisioning
and the possibly confounding effect of motor complexity. Phylogenetic least-square (PGLS) and phylogenetic logistic (PLR) multiple
regression models with the knowledge-niche elements (diet breadth, extractive foraging and tool use) and additive knowledge-niche
complexity score as response variables and body mass, age at first reproduction (AFR), motor-niche complexity and brain size as predictor
variables for the 78 primate species (a). Phylogenetic least-square and phylogenetic logistic multiple regression models with the knowledge-
niche elements (diet breadth, extractive foraging and cooperative hunting) and additive knowledge-niche complexity score as response
variables and body mass, length of provisioning, and brain size as predictor variables for the 65 carnivoran species (b). Statistical
significance (p<0.05) is indicated by bold font.

a) Primates N=78

dependent variable method R2 phylogenetic signal predictor variables estimate std. error p-value

diet breadth PGLS

0.24 λ = 0.00
log body -0.659 0.324 0.045

log brain 1.213 0.391 0.003

0.27 λ = 0.00

log body -0.621 0.319 0.055

log AFR 0.915 0.486 0.064

log brain 0.744 0.458 0.108

0.30 λ = 0.00

log body -0.239 0.355 0.503

motor-niche complexity 0.559 0.224 0.015

log brain 0.683 0.433 0.119

extractive foraging PLR

- α = 0.06
log body -3.264 1.106 0.003

log brain 4.934 1.416 <0.001

- α = 0.07

log body -3.184 1.100 0.004

log AFR 3.343 1.375 0.015

log brain 3.275 1.418 0.021

- α = 0.01

log body 2.052 2.217 0.355

motor-niche complexity 9.817 3.149 0.002

log brain 0.278 2.508 0.912

tool use PLR

- α = 0.61
log body -3.600 1.432 0.012

log brain 6.092 2.177 0.005

- α = 0.02

log body -2.727 1.140 0.017

log AFR 2.048 1.360 0.132

log brain 3.767 1.586 0.018

- α = 0.0009

log body -1.601 0.724 0.027

motor-niche complexity 1.324 0.638 0.038

log brain 2.873 1.019 0.005

knowledge-niche compl. PGLS

0.48 λ = 0.00

log body -2.051 0.512 <0.001

log AFR 2.429 0.788 0.003

log brain 2.282 0.753 0.003

0.74 λ = 0.00

log body -0.394 0.403 0.332

motor-niche complexity 1.100 0.112 <0.0001

log brain 1.318 0.493 0.009

to be continued
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b) Carnivorans N=65

dependent variable method R2 phylogenetic signal predictor variables estimate std. error p-value

diet breadth PGLS

0.03 λ = 0.19
log body 0.107 0.238 0.654

log brain -0.257 0.362 0.480

0.10 λ = 0.27

log body -0.033 0.246 0.894

log provsioning 0.599 0.273 0.032

log brain -0.332 0.356 0.355

extractive foraging PLR

- α = 0.098
log body 0.695 0.723 0.337

log brain -1.118 1.101 0.310

- α = 0.07

log body 0.925 0.776 0.233

log provisioning -0.166 0.819 0.839

log brain -1.397 1.117 0.211

cooperative hunting PLR

- α = 0.09
log body 0.142 1.520 0.926

log brain 0.549 2.396 0.819

- α = 0.01

log body -7.380 3.249 0.023

log provisioning 7.673 3.523 0.029

log brain 9.310 4.202 0.027

knowledge-niche complexity PGLS 0.13 λ = 0.29

log body 0.000 0.260 0.999

log provisioning 0.802 0.287 0.007

log brain -0.308 0.377 0.417
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Figure S3. Relationships between relative brain size (corrected for body mass) and the different elements of knowledge-niche complexity
in primates.
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Figure S4. Relationships between relative brain size (corrected for body mass) and the different elements of knowledge-niche complexity
in carnivorans.
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Chapter 3

Extended opportunities for skill

learning enable the evolution of

intelligence - a comparative study in

birds

Sereina M. Graber, Carel P. van Schaik, Michael Griesser

Abstract

The cultural intelligence hypothesis proposes that extended opportunities for social learning ultimately

favor the evolution of intelligence, and thus increased brain size. To date, no study has tested its key

prediction: that increased opportunities for socially mediated learning during development are asso-

ciated with greater individual learning ability, and thus larger relative brain size. We systematically

tested this prediction using phylogenetic comparative methods across a large sample of bird species (N

= 634). As predicted, we find that both a longer period of post-fledging parent-offspring association

and a larger number of role models were associated with a higher degree of encephalization. Our find-

ings suggest that the high levels of cooperation in long-term monogamous pair bonds imply increased

social tolerance by parents, allowing for more learning opportunities by the offspring. These conditions

ultimately enable the evolution of intelligence. Because this pattern was not found for non-passerine

orders, a fundamental difference may exist in the need for skill learning between the two main avian

lineages, linked to vulnerability to starvation. This confirmation of the cultural intelligence hypoth-

esis emphasizes the importance of opportunities for learning during development in the evolution of

cognition.
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Introduction

In many birds and mammals, feeding skills are not simply innate or developmentally canalized, but

are instead acquired during development through learning and practice. Thus, individuals gradually

increase their food-capturing abilities and expand their diet breadth as they develop (reviewed by Wun-

derle 1991; Marchetti and Price 1989), and only start reproducing once adult-level skill competence is

reached (Schuppli et al. 2012). Non-food related skills similarly need practice before adult proficiency

is reached, as shown by studies on the role of experience in predator recognition or the effectiveness of

helping in cooperative breeders (Lawton and Guindon 1981, Poiani 1993, Komdeur 1996, Griesser and

Suzuki 2016). Although alternative or complementary explanations for age differences in behavior and

efficiency invoke morphological constraints or nutritional requirements, the majority of studies ascribe

age-related changes in foraging behavior and efficiency to lack of experience (Marchetti and Price 1989).

Skill acquisition relies on an array of learning categories ranging from purely individual exploration,

practice and learning to fully social, observational learning (Heyes 2012). Purely individual (asocial)

learning is based on the mechanism of private trial-and-error without any social inputs, whereas ob-

servational learning implies close social contact, allowing for imitation or emulation (van Schaik et al.

2017). Protracted association with parents (i.e. family living: Ekman and Griesser 2002) and other

caretakers provides young with extended opportunities for skill learning. A recent study in Siberian

jays (Perisoreus infaustus) has shown that näıve individuals copy the mobbing behavior of role models,

particularly from related caretakers (Griesser and Suzuki 2016). However, family living also allows for

various intermediate possibilities of socially buffered learning, which may be of great importance (van

Schaik et al. 2017). Thus, caretakers work as an energetic buffer in terms of providing increased vigi-

lance and/or provisioning, ultimately allowing for more extensive individual learning. We can call this

protected and supported individual learning, respectively (Heinsohn 1987, Alonso and Alonso 1993,

Yoerg 1998, Gamero and Kappeler 2015, van Schaik et al. 2017). The social component of protected

and supported individual learning eases the time and energetic compromises otherwise imposed by

skill learning. Since in practice parental and allomaternal care most commonly encompass predator

protection as well as provisioning, the two mechanisms are non-exclusive and most likely co-occur in

most species. These various, complementary forms of social learning thus offer extended opportunities

for skill learning in species with extended parent-offspring association.

Given the widespread reliance on skill learning, it follows that where individuals have more opportuni-

ties to learn (be it individual, social, or supported or protected), they should be able to assemble the

adult skill set faster or acquire a larger skill set (van Schaik and Burkart 2011; Schuppli and Graber et

al. 2016). Consistent with this prediction, comparative work in primates and carnivorans has shown

that a slow pace of development and longer periods of provisioning, by offering a greater abundance of

opportunities for individual and social learning, co-occur with more complex foraging niches (Schuppli

et al. 2012; Schuppli and Graber et al. 2016). Moreover, in great ape species with a fission-fusion

social system (chimpanzees and orangutans), the percentage of time in association with other individ-

uals than the mother, which reflects the abundance of opportunities for social or protected learning,

is positively correlated with a population’s repertoire of complex cultural variants (van Schaik 2003,

Whiten and van Schaik 2007).

Among birds, no systematic comparative studies have so far examined whether variation in oppor-

tunities for learning (i.e. the duration of post-fledging association with caretakers, as well as their

number) is linked to variation in skill sets or niche complexity. This absence may be related to two
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problems. First, direct estimates on the size of the repertoire of learned skills, especially in wild

populations of birds, are difficult to acquire, because skill sets in birds encompass a broad range of

dimensions including breeding, parenting/alloparenting, predator avoidance, foraging, piracy behavior

and habitat selection (Schuppli et al. 2012). Second, within these dimensions there is an enormous

intraspecific variability e.g. for foraging in terms of foraging sites, search methods/patterns, food

recognition/selection, prey capture and handling techniques. While this variability implies a major

role of skill learning, it hampers the determination and quantification of the degree of skill complex-

ity, and thus species comparisons. Nevertheless, there is some evidence for birds suggesting that more

complex skills require more time to learn and that adult levels are reached later in development. Thus,

in white-breasted mesites (Gamero and Kappeler 2015) and Eurasien dippers (Yoerg 1998) young with

a slower acquisition of adult-level feeding efficiency and more complex foraging techniques (in the dip-

per case, diving for large prey in contrast to catching stationary larvae) disperse at later ages. These

findings suggest that longer parent-offspring associations are linked to higher levels of learned skills -

either in terms of handling efficiency or complexity.

Skill learning and the evolution of intelligence

Because having a greater number of skills or more complex skills is advantageous by providing behav-

ioral flexibility in diverse or changing environments (Wright et al. 2010), it should positively affect

fitness (e.g. Sol et al. 2002). Selection will thus generally favor increases in the size of the repertoire

of learned skills. And since various studies in both birds and primates have shown that a species’

social and asocial learning (or innovation) abilities are correlated (Lefebvre et al. 1996, Lefebvre 2000,

Lefebvre and Giraldeau 1996, Reader and Laland 2002), selection will generally favor increases in skills

when opportunities for skill learning are abundant, whether they are learned individually through pro-

tected/supported learning or through social learning.

These data and arguments are consistent with the cultural intelligence hypothesis (CIH) (Whiten

and van Schaik 2007, van Schaik and Burkart 2011), which suggests that systematic opportunities for

cultural (i.e. social) acquisition of complex skills are a precondition for selection for increased intelli-

gence, we predict that the abundance of opportunities for skill learning, either individually, through

protected/supported individual learning, or social observational learning, will be an enabling factor

in the evolution of intelligence, i.e. the ability to innovate, behave flexibly and learn rapidly. Thus,

the key prediction is that intelligent species should be those where long-term, close proximity with

tolerant role models is possible.

A systematic test of the correlation between the reliance on extended skill learning and intelligence

has not yet been conducted (beyond an ad hoc attempt by van Schaik et al. 2012). Birds show great

variation in life history, innovation propensity and brain size. Furthermore, studies have found species

with higher behavioral flexibility (as indexed by innovation repertoires or learning ability) have larger

relative brain size (e.g. Overington et al. 2009; Ducatez et al. 2015) and are better social learners

(Sasvari 1985). Birds are therefore an excellent taxon to test the main prediction of our hypothesis

that more intelligent species show higher incidence of social learning (or opportunities for it).

The present study therefore examined the interspecific correlation between the abundance of op-

portunities for skill learning in birds. We used (relative) brain size as a proxy of general cognitive

abilities in the comparative analyses reported below. Although domain-general cognitive abilities have

been measured in few species, comparative work in primates suggests that they are closely related to
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brain size (Deaner et al. 2007; Reader et al. 2011; Graber et al. in review). Likewise, high innovation

frequencies, representative for individual learning and thus intelligence, show correlated evolution with

brain size in birds (e.g. Lefebvre et al. 1997, Timmermans et al. 2000, Sol et al. 2016).

We use both the duration offspring stay with the parents/caretakers and the absolute number of

caretakers as a proxy measure for opportunities for skill learning.

First, prolonged juvenile dependence offers more time to learn, and indeed has been associated with

learning-intensive foraging techniques in New Caledonian crows (Hunt et al. 2012). Second, allo-

parental caretakers during breeding, which in the majority of cases are related to the offspring, show

high levels of social tolerance and thus offer the best opportunities for skill acquisition through social

learning (van Schaik 2010). Indeed, Griesser and Suzuki (2016) recently showed that offspring are

more likely to learn socially from related than unrelated caregivers. Furthermore, a larger number

of caretakers alleviates the time needed for vigilance and/or feeding offering more time for individual

learning and exploration (i.e. protected and supported individual learning).

So far, most comparative research in primates and birds has mainly focused on testing the social

brain hypothesis, which predicts that managing a complex social environment requires enhanced cog-

nitive abilities and thus ultimately drives the evolution of encephalization (Dunbar 1998). In primates,

social group size as a representative of social complexity seems to play some role in the evolution of

intelligence (e.g. Dunbar 1998). In birds, however, there is no evidence for an effect of the absolute

number of associates (flock size: Beauchamp and Fernandez-Juricic 2004), but rather the type and

strength of the pair bonds. Emery et al. (2007) and Shultz and Dunbar (2010) found that the most

encephalized species are those with multi-year pair bonds, and suggested that the higher degrees of

coordination and cooperation associated with long-term monogamy require high levels of cognition.

To preclude that our measures of opportunities for social learning (where social tolerance is abundant,

high levels of cooperation are more likely) are not simply reflecting the social brain effect in terms of

long-term pair bonding, one needs to additionally account for the effect of long-term pair bonds when

testing the cultural intelligence hypothesis.

We use a comparative sample of 634 bird species to test for correlated evolution between relative

brain size and the total number of caretakers as well as time of post-fledging caretaker-offspring asso-

ciation. We predict that the increasing number of tolerant role models (i.e. caretakers) and the length

of post-fledging caretaker-offspring association are correlated with relative brain size. We additionally

control for the effects of long-term pair bonds in order to account for the social brain hypothesis as

an alternative explanation.

We tested the prediction both for all birds and for particular lineages. In particular, we were interested

in the contrast between passerines and non-passerines, not only because of fundamental phylogenetic

differences but also because passerines are generally smaller and have a higher basal metabolic rate

(Londono et al. 2015, Bech et al. 2016), which should make them more likely to use cognitive buffering

rather than physiological buffering (Navarrete et al. 2011) in response to food shortage, which in turn

may influence their brain size and how brain size is linked to post-fledging association.
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Material and Methods

Data

We used measurements of total relative brain size as a proxy for intelligence. First, among mammals

the cognitive process involved in general problem solving comprises multiple brain parts simultane-

ously (Barton 2006, Anderson 2010) and thus correlates with overall brain size (Deaner et al. 2007).

It is justified to make this assumption for birds as well because Sol et al. (2005) found a strong corre-

lation between innovation propensity (an expression of intelligence) and overall relative brain size in

this lineage. Second, as in mammals (Bennett and Harvey 1985a, Finlay et al. 2001), changes in size

of individual brain parts among bird species are correlated among each other as well as with changes

in overall brain size (Iwaniuk et al. 2004).

All the data on a total of 634 avian species (347 non-passerines, 287 passerines) were retrieved from

the literature. Brain size and body mass were based on an established data base by K. Isler originally

compiled from various sources (Mlikovski 1989a, 1989b, 1989c, 1990; Iwaniuk and Nelson 2003; Schön-

wetter 1960-1978). Life history data on development mode, length of post-fledging caretaker-offspring

association and total number of caretakers were retrieved from the major handbooks of birds (Del

Hoyo et al. 2011, the Poole 2005, Higgins et al. 2007, Maclean and Robert 1985).

Development mode at birth was dichomotized into precocial and altricial, in each case including semi-

precocial and semi-altricial species. Long-term pair-bonding data was taken from Shultz and Dunbar

2010, where they are defined as ”high probability of persistence across breeding seasons”. We di-

chomotized their variable (3 levels: non-pair, short-pair and long-pair) into a binary variable (2 levels:

long-pair vs. non/short pair).

As estimates of the abundance of opportunities for extended skill learning we used two main measures:

(1) the length of post-fledging caretaker-offspring association, represented by the period from when

hatchlings leave the nest until dispersal; and (2) the total number of caretakers who contribute to feed-

ing and protection of hatchlings and fledglings (including breeding pair). If a species was described to

a facultative cooperative breeder, the number of helpers (caretakers in addition to breeding pair) was

halved and added to the breeding pair (total number of caretakers = 2 + 0.5 * number of helpers).

Analyses

Analyses were run for the total sample of 634 species as well as for passerines (N=287) and non-

passerines (N=347) separately. If additionally accounting for long-term pair bonding, the analyses

were repeated on a reduced sample, since the data of Shultz and Dunbar 2010 overlap only for N=56,

and N=28 for passerines and non-passerines species, respectively.

Due to the fundamental difference in the phylogenetic history of the passerines and non-passerines (Jetz

et al. 2012), a phylogenetic analysis including all species might lead to misleading results. In fact, the

phylogenetic signal, i.e. the degree to which interspecific variation in trait values is correlated with

phylogenetic distance (lambda [λ], Pagel 1999), in the traits included in our analyses are very different

for passerines and non-passerines, and thus might also be for the residual errors in models (Table

3.1). In passerines most diversification happened relatively recent in evolutionary time, thus, trait

similarities between species are to a higher degree assignable to their long path of shared evolutionary

history (i.e. moderate/high phylogenetic signals), whereas in non-passerine species the opposite is the

case, i.e. early diversification, briefly shared evolutionary histories and minimal phylogenetic signals.
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Table 3.1: Phylogenetic signal (lambda) for body mass, brain size, post-fledging caretaker-offspring association (PFA), number of
caretakers and the product thereof (total PFA), for passerines and non-passerine species. P-values based on likelihood ratio test, lambda
significantly different from 0.0. Calculated using the phylosig function in R package phytools (Revell 2012).

Clade body mass brain size PFA # caretakers total PFA

Passerines (N=287) 0.87 (p<0.001) 0.84 (p<0.001) 0.46 (p<0.001) 0.24 (p=0.021) 0.30 (p=0.002)

Non-passerines (N=347) 0.00 (p=1.00) 0.00 (p=1.00) 0.00 (p=1.00) 0.059 (p=0.08) 0.00 (p=1.00)

We used phylogenetic least-square (PGLS) regression including the estimation of phylogenetic

signal lambda for the analyses (caper, Orme et al. 2013). Because both brain size and length of

post-fledging association are known to correlate with body mass and development mode (Bennett

and Harvey 1985b, Iwaniuk and Nelson 2003), all analyses accounted for these effects using multiple

regression models. The interaction term between the length of post-fledging association and number

of caretakers was only included in a model if significant.

The natural Log transformation was applied to continuously varying variables in order to obtain

normally distributed model residuals. All analyses and graphs were performed in the R programming

language (R development core team 2014).

The relationship between brain size and opportunities for extended learning in terms of total number of

caretakers and length of the post-fledging association period might (besides long-term pair bonding)

be accounted for by several other factors, which have been suggested to be associated with brain

size: migration, annual fecundity, breeding latitude. The statistical models controlling for and further

details on these potential confounding effects are given in the supplementary material.
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Results

For birds in general, the length of post-fledging association and the total number of caretakers show

significantly positive effects on brain size after controlling for body mass and development mode (Ta-

ble 3.2a: models A,B; Fig. 3.1A,B), consistent with our prediction. In the model including both

measurements of opportunities for extended learning, the effect of the number of tolerant role models

significantly affects encephalization (Table 3.2a: model C), but the effect of length of post-fledging asso-

ciation disappears. Even though the variance inflation factor does not indicate severe multicollinearity

(e.g. Hair et al. 1998), the two factors might still partly cancel each other out. The interaction term

was not significant, and thus not included in the model. We see a similar pattern if we additionally

control for the effect of long-term pair-bonding in a reduced sample (Table 3.3a). Here, however, the

effect of number of caretakers disappears most likely due to extremely reduced variation.

Including only passerine species, the models show equivalent, but even stronger patterns (Table 3.2b,

model A-C; Fig. 3.1A,B). In this case, in the model including both estimates of opportunities for skill

learning additionally yields a significant negative interaction effect (Table 3.2b: model C). In other

words, the effect of the length of post-fledging association on relative brain size is more pronounced

in species with fewer caretakers, suggesting a compensatory pattern between number of role models

and time spent with them. Also if we additionally control for long-term pair bonding, the effect of the

length of post-fledging association remains, but also here the effect of the number of caretakers dis-

appears, again most likely due to extremely reduced variation (Table 3.3b). In non-passerine species,

interestingly, no significant effects were found (Table 3.2c and 3.3c: model A-C; Fig. 3.1A,B).

All the analyses were repeated without controlling for body mass and development mode. The results

were retained. The robustness of our results was further underlined by the effects of including the

various potentially confounding effects of annual fecundity, migration and breeding latitude. These

analyses all produce the same basic result: more post-fledging association shows correlated evolution

with larger relative brain size (Tables S1-S3 in the supplementary material).

Figure 3.1: Interspecific relationships between residuals Ln brain size and A) residuals Ln postfledging caretaker-offspring association,
B) residuals total number of caretakers for the passerine (red) and non-passerine (blue) species. Corresponding residuals are based on
non-phylogenetic multiple regression models with Ln body mass and development mode as predictor variables.
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Table 3.2: Multiple PGLS regression models for a) all species, b) passerine species only, and c) non-passerines species only, with Ln
brain size as response and Ln length of postfledging caretaker-offspring association (Ln PFA) (model A), total number of caretakers
(# caretakers) (model B), and both, Ln length of postfledging association (Ln PFA) and total number of caretakers (caretakers) with
corresponding interaction (model C) as predictor variables. All models additionally include Ln body mass as a covariate and the ones
including all species and the non-passerines additionally control for development mode (altricial vs. precocial). Interaction effects are only
included if significant. Given are the Akaike information criterion (AIC), coefficient of determination (R2) and the phylogenetic signal (λ)
as well as the estimates and p-values for each model. P-values reaching a significance level lower than 5% are indicated in bold.

Ln PFA # caretakers interaction

Model AIC R2 λ estimate p-value estimate p-value estimate p-value

a) all species (N=634)

model A -462.9 0.89 0.90 0.013 0.050 - - - -

model B -466.8 0.89 0.91 - - 0.017 0.006 - -

model C -466.4 0.89 0.91 0.009 0.213 0.015 0.020 - -

b) passerines (N=287)

model A -273.0 0.90 0.78 0.029 0.002 - -

model B -269.5 0.89 0.82 - - 0.015 0.016

model C -276.8 0.89 0.82 0.066 0.001 0.125 0.009 -0.020 0.015

c) non-passerines (N=347)

model A -214.0 0.89 0.92 0.004 0.628 - - - -

model B -214.1 0.89 0.92 - - 0.013 0.534 - -

model C -212.2 0.89 0.92 0.003 0.744 0.011 0.611 - -
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Table 3.3: Multiple PGLS regression models for a) all species, b) passerine species only, and c) non-passerines species only, with Ln
brain size as response and Ln length of post-fledging caretaker-offspring association (Ln PFA) (model A), total number of caretakers (
caretakers) (model B), and both, Ln length of post-fledging association (Ln PFA) and total number of caretakers (#caretakers) with
corresponding interaction (model C) as predictor variables additionally controlling for long-term pair bonding (models A.2, B.2, C.2). All
models additionally include Ln body mass as a covariate and the ones including all species and the non-passerines additionally control
for development mode (altricial vs. precocial). No interaction effects included because non-significant. Given are the Akaike information
criterion (AIC), coefficient of determination (R2) and the phylogenetic signal (λ) as well as the estimates and p-values for each model.
P-values reaching a significance level lower than 5% are indicated in bold.

Ln PFA # caretakers pair-bonding

Model AIC R2 λ estimate p-value estimate p-value estimate p-value

a) all species (N=56)

model A.1 -7.8 0.93 0.86 0.093 0.013 - - - -

model A.2 -15.1 0.94 0.81 0.092 0.009 - - 0.202 0.003

model B.1 -1.4 0.92 0.86 - - 0.027 0.546 - -

model B.2 -7.9 0.93 0.82 - - 0.021 0.615 0.206 0.005

model C.1 -6.6 0.93 0.85 0.113 0.011 -0.043 0.390 - -

model C.2 -14.4 0.94 0.8 0.116 0.006 -0.050 0.285 0.205 0.003

b) passerines (N=28)

model A.1 -14.5 0.94 0.83 0.078 0.058 - - - -

model A.2 -20 0.96 0.64 0.084 0.033 - - 0.201 0.010

model B.1 -12 0.94 0.7 - - 0.047 0.294 - -

model B.2 -16.6 0.95 0.5 - - 0.049 0.216 0.198 0.016

model C.1 -12.5 0.94 0.83 0.077 0.129 0.001 0.983 - -

model C.2 -18 0.96 0.64 0.084 0.092 -0.001 0.991 0.201 0.012

c) non-passerines (N=28)

model A.1 2.4 0.92 0.9 0.076 0.233 - - - -

model A.2 2.3 0.92 0.89 0.059 0.358 - - 0.162 0.203

model B.1 3.8 0.91 0.93 - - -0.023 0.816 - -

model B.2 2.4 0.92 0.94 - - -0.089 0.395 0.229 0.098

model C.1 3.5 0.92 0.9 0.104 0.156 -0.093 0.408 - -

model C.2 2.2 0.93 0.91 0.094 0.181 -0.146 0.200 0.212 0.113
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Discussion

Our results show that in birds in general, and passerines in particular, species in which offspring stay

longer with their parents and are surrounded by more tolerant role models (i.e. have increased levels

of opportunities for skill learning) show larger relative brain sizes. This confirms the prediction based

on the cultural intelligence hypothesis: opportunities for learning enable selection on increased skill

levels and thus increased brain size when the possession of extra skills increases fitness and thus is not

prevented by high degrees of unavoidable mortality.

It could be argued that this result is an artifact. A first possible objection could be that we have

not in fact tested the cultural intelligence hypothesis, but rather the social brain hypothesis. In avian

species, the social brain hypothesis claims the cognitive demands of managing stable social relation-

ships in terms of long-term pair bonds to drive the evolution of enlarged brains (Shultz and Dunbar

2007; Emery et al. 2007; Shultz and Dunbar 2010). Nonetheless, our results showed, that even after

additionally including the effect of long-term pair bonds into a regression model, the duration of post-

fledging parent-offspring association still significantly affects encephalization. These findings suggest

an association between relative brain size and both long-term pair-bonds and extended post-fledging

association of offspring. We therefore propose that the high level of cooperation in long-term monog-

amous and cooperatively breeding species allows for higher degrees of social tolerance which in turn

allows for the social acquisition of learning-intensive skills. Furthermore, in addition to the stable and

socially tolerant environment afforded by the family group, the duration of this association provides

time for skill learning and shows correlated evolution with intelligence.

A second alternative interpretation is that immatures in species with longer post-fledging associations

perhaps merely receive longer periods of provisioning, and thus have more favorable energy budgets

to support brain growth, as proposed by the Maternal Energy Hypothesis (Martin 1996). However,

even though the beneficial effects of provisioning are not to be dismissed, the pattern is retained when

we control for a species’ development mode (altricial young are provisioned, whereas precocial ones

are not).

Finally, the relationship between brain size and opportunities for extended learning in terms of total

number of caretakers and length of the post-fledging association period might be due to the effects

of various confounding variables: migration (Sol et al. 2005), annual fecundity (Isler and van Schaik

2009) and breeding latitude (Covas 2012) (details see supplementary material). However, even after

additionally taking those factors into account, the effects of opportunities for skill learning on relative

brain size remained (supplementary information: Tables S1-S3).

Given that our findings are robust, their implications in relation to the cultural intelligence hypothesis

presumes that birds learn their skills at least partly through social learning as broadly defined here and

that more role models and more time in association with them actually leads to more opportunities

for doing so. This conclusion may be surprising for birds, because it has been argued that birds do

not learn socially in nature or that they do not use the opportunities for social learning offered by

living in groups. Here, we address these concerns.

First, it has been suggested that in general social transmission is far more prevalent in primates

than in birds (Lefebvre and Bouchard 2003). However, a great number of cross-fostering experiments

and studies in captive and wild populations have shown that birds learn behavioral patterns in nest

defense, predator recognition, vocal repertoire, mate choice and feeding niche through social trans-

mission (Norton-Griffiths 1968; Curio 1978; Farabaugh et al. 1994; Slagsvold et al. 2002; Slagsvold

and Hansen 2001; Slagsvold and Wiebe 2007; Slagsvold and Wiebe 2011; Werner and Sherry 1987;
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Midford et al. 2000; Boogert et al. 2008; Aplin et al. 2013, 2015; Farine et al. 2015; Griesser and

Suzuki 2016). Moreover, every experiment that examined whether birds can engage in imitation found

evidence in favor of it (Lefebvre and Bouchard 2003), begging the question why birds would be so

good at observational forms of social learning, if they did not use it in practice. Taken together, these

findings not only provide strong evidence that birds need to acquire their skills, but more importantly,

also that they often do so through social learning. Although we are not able to distinguish whether

the immatures rely more on supported, protected or observational learning, all depend on social me-

diation. In fact, purely individual acquisition of skills without any contact to role models is dangerous

and time-consuming and thus makes skill acquisition far less efficient in contrast to any form of socially

mediated learning (e.g. Midford et al. 2000). As a result, immatures of many species prefer social

learning (van Schaik and Burkart 2011, van Schaik et al. 2017).

Second, the CIH presumes higher degrees of social learning in species with a higher number of tolerant

role models and/or longer associations with them (i.e. extended opportunities for it). The fact that

many studies found that social learning is not necessarily more abundant in more social species, in

birds as well primates (Lefebvre and Bouchard 2003, Lefebvre et al. 1996, Templeton et al. 1999,

Reader and Lefebvre 2001), appears to argue against this assumption. However, increasing flock size

or group size are not adequate measures of opportunities for social learning because individuals in

such aggregations are not necessarily related or socially tolerant, and thus are not expected to learn

socially from each other. In fact, social learning is only expected where close social contact to tolerant

role models are prevalent, such as within cooperatively breeding family groups. Indeed, a study in two

Corvids showed that the species which breeds cooperatively and shows many prosocial interactions

(Gynmnorhinus cyanocephalus) learns more efficiently in a social compared to an asocial environment,

whereas the less social species (Nucifraga columbiana) did not show a difference between the two

learning conditions (Templeton et al. 1999).

We therefore think that both the comparative evidence and a revised interpretation of the behav-

ioral studies indicate that birds learn socially from one another, especially from tolerant role models,

and that elongated periods of post-fledging protection and provisioning, i.e. family living, repre-

sents an optimal environment for socially mediated skill learning. If more skills imply higher fitness,

selection should favor larger brains where opportunities for social learning are more abundant. In

concordance with this prediction of the cultural intelligence hypothesis, our results suggest that the

abundance of such conditions favor the evolution of increased encephalization. Whereas we find evi-

dence across birds in general and particularly across passerine species, no such pattern is found across

non-passerine orders. This discrepancy in findings may be explained by a major difference between

these two phylogenetically clearly distinct clades (Jetz et al. 2012) in the need for skill acquisition

(based on differences in metabolism) and thus opportunities for socially mediated learning. Even

though past studies provide non-conclusive evidence on differences in basal metabolic rates (Lasiewski

and Dawson 1967, Reynolds and Lee 1996, McKechnie and Wolf 2004), the latest, more comprehensive

studies clearly show higher BMR in passerines compared to non-passerines, independent of breeding

latitude (Londoño et al. 2015, Bech et al. 2016). Additionally, our sample clearly shows smaller

body mass in passerine compared to the non-passerine orders (supplementary material: Table S4):

the average non-passerine is 30 times heavier than the average passerine. High metabolism relative to

body size plus small body size implies high vulnerability to starvation, especially in highly seasonal

environments. Therefore, passerine species potentially are in the need of more complex and learning-

intensive skills in order to overcome seasonally lean periods, because alternative strategies such as fat

storage are unfavorable in avian species (Heldstab et al. 2016).
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This difference in need is indeed reflected in their social organization. Across our sample of 634

species, passerine species tend to have a larger number caretakers, i.e. larger number of tolerant role

models offering opportunities for social learning (supplementary information: Table S4). Taken to-

gether, based on metabolic differences, non-passerine species may be less sensitive to starvation and

thus, have less need for seasonal buffering, and thus for the acquisition of a broad and flexible skill

repertoire (based on strong innate learning ability), which is reflected in decreased opportunities for

social learning. However, this line of argumentation is currently speculative and the discrepancy in

our findings as well as general differences between passerine and non-passerine species certainly needs

further investigations.

In conclusion, as predicted by the evolutionary version of the cultural intelligence hypothesis we

find that there is strong correlated evolution between encephalization and opportunities for socially

mediated learning in terms of both the number of tolerant role models and time in association with

them. This effect is most pronounced in passerines, arguably because they are far more sensitive to

starvation risk.
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Supplementary Material

The relationship between brain size and opportunities for extended learning in terms of total number

of caretakers and length of the post-fledging association period might alternatively be accounted for

by several other factors: migration, annual fecundity and breeding latitude.

First, several studies have shown that migrating species have smaller relative brain sizes compared to

resident species, perhaps because long-distance migration does not allow them to have energetically ex-

pensive large brains (Sol et al. 2005, Sol et al. 2010, Winkler et al. 2004), though perhaps also because

they might be time-constrained in the post-fledging parent-offspring period. We therefore included

migration tendency as a confounding variable. We classified species as resident if they are sedentary

and or do local movements, whereas migratory species include those with regional movements and

long distance migration (based on minimal movement distances). A second potential confounder is

annual fecundity. According to the expensive brain framework (Isler and van Schaik 2009) and basic

life history theory (e.g. Flatt and Heyland 2011), production shows not only a cross-species trade-off

with brain size but also the amount of (allo-)parental care and the length of caretaker-offspring associ-

ation. Additionally, we accounted in our analyses for the effects of breeding latitude since reproductive

life histories (Covas 2012) and brain size through stronger cognitive buffer effects at high latitudes

(Garamszegi and Lucas 2005) might confound the predicted relationship between opportunities for ex-

tended skill learning and brain size. We calculated annual fecundity as the product of clutch size and

number of clutches per year; breeding latitude represents the northernmost latitude in the breeding

range given in Botero et al. (2013).

Given that these factors may influence the length of post-fledging association as well as brain size, we

controlled therefore by additionally including them into the phylogenetic regression models displayed

in the Tables S1 - S3. Because data on annual fecundity and breeding latitude were not available

for the total set of 634 species, the analyses from the main text are repeated in these cases with the

subsamples of N=534 and N=469, respectively, in order to show that the main effects of length of

post-fledging association and number of caretakers also hold in these subsamples. The interaction

between length of post-fledging association and number of caretakers are only included in the model

if significant (p < 0.05).
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Table S1. Multiple PGLS regression models for a) all species, b) passerines and c) non-passerines species with Ln brain size as response
and Ln length of post-fledging caretaker-offspring association (Ln PFA) (model A), total number of caretakers (# caretakers) (model B),
both, Ln length of post-fledging association (Ln PFA) and total number of caretakers (#caretakers) with corresponding interaction (model
C) as predictor variables additionally controlling for Ln annual fecundity (models A.2, B.2, C.2). All models additionally include Ln body
mass as a covariate and the ones over all species/non-passerines additionally control for development mode (altricial vs. precocial). Given
are the Akaike information criterion (AIC), coefficient of determination (R2) and the phylogenetic signal (λ) as well as the estimates and
p-values. P-values reaching a significance level lower than 5% are indicated in bold.

Ln annual fecundity Ln PFA # caretakers interaction

Model AIC R2 λ estimate p-value estimate p-value estimate p-value estimate p-value

a) all species (N=534)

model A.1 -403.0 0.89 0.89 - - 0.020 0.021 - - - -

model A.2 -401.2 0.89 0.89 -0.006 0.736 0.019 0.024 - - - -

model B.1 -404.0 0.89 0.90 - - - - 0.016 0.013 - -

model B.2 -402.8 0.89 0.89 -0.015 0.383 - - 0.017 0.010 - -

model C.1 -404.7 0.89 0.89 - - 0.015 0.104 0.013 0.058 - -

model C.2 -403.1 0.89 0.89 -0.012 0.514 0.014 0.130 0.014 0.048 - -

b) passerines (N=254)

model A.1 -240.7 0.90 0.77 - - 0.029 0.005 - - - -

model A.2 -238.8 0.90 0.78 0.008 0.716 0.030 0.005 - - - -

model B.1 -238.7 0.89 0.82 - - 0.015 0.019 - -

model B.2 -236.8 0.89 0.82 -0.007 0.767 0.016 0.019 - -

model C.1 -244.2 0.90 0.82 0.067 0.003 0.130 0.011 -0.020 0.019

model C.2 -242.2 0.90 0.82 -0.005 0.823 0.067 0.003 0.131 0.012 -0.020 0.019

c) non-passerines (N=280)

model A.1 -184.2 0.90 0.91 0.017 0.211 - -

model A.2 -183.8 0.90 0.90 -0.033 0.209 0.016 0.256 - -

model B.1 -182.6 0.89 0.91 0.000 0.987 - -

model B.2 -182.5 0.90 0.90 -0.036 0.174 -0.001 0.953 - -

model C.1 -182.4 0.90 0.91 0.019 0.187 -0.010 0.666 - -

model C.2 -182.0 0.90 0.91 -0.033 0.209 0.017 0.224 -0.010 0.662 - -
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Table S2. Multiple PGLS regression models for a) all species, b) passerines and c) non-passerines species with Ln brain size as response
and Ln length of postfledging caretaker-offspring association (Ln PFA) (model A), total number of caretakers ( caretakers) (model B),
both, Ln length of postfledging association (Ln PFA) and total number of caretakers (caretakers) with corresponding interaction (model
C) as predictor variables additionally controlling for migration. All models additionally include Ln body mass as a covariate and the
ones over all species/non-passerines additionally control for development mode (altricial vs. precocial). Given are the Akaike information
criterion (AIC), coefficient of determination (R2) and the phylogenetic signal (λ) as well as the estimates and p-values. P-values reaching
a significance level lower than 5% are indicated in bold.

migration Ln PFA # caretakers interaction

Model AIC R2 λ estimate p-value estimate p-value estimate p-value estimate p-value

a) all species (N=634)

model A -464.2 0.89 0.90 -0.028 0.072 0.011 0.123 - - - -

model B -468.9 0.89 0.91 -0.030 0.045 0.017 0.008 - - - -

model C -467.6 0.89 0.91 -0.027 0.073 0.006 0.389 0.015 0.020 - -

b) passerines (N=287)

model A -294.9 0.90 0.79 -0.105 0.000 0.019 0.038 - - - -

model B -295.3 0.90 0.82 -0.110 0.000 - - 0.013 0.032 - -

model C -298.8 0.90 0.82 -0.103 0.000 0.053 0.007 0.118 0.010 -0.018 0.018

c) non-passerines (N=347)

model A -215.0 0.89 0.92 0.036 0.083 0.008 0.388 - - - -

model B -214.9 0.89 0.92 0.033 0.099 - - 0.016 0.434 - -

model C -213.4 0.89 0.92 0.036 0.079 0.007 0.493 0.012 0.565 - -
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Table S3. Multiple PGLS regression models for a) all species, b) passerines and c) non-passerines species with Ln brain size as response
and Ln length of postfledging caretaker-offspring association (Ln PFA) (model A), total number of caretakers (# caretakers) (model
B), both, Ln length of postfledging association (Ln PFA) and total number of caretakers (caretakers) (model C) as predictor variables
additionally controlling for northern breeding latitude (models A.2, B.2, C.2). All models additionally include Ln body mass as a covariate
and the ones over all species/non-passerines additionally control for development mode (altricial vs. precocial). Given are the Akaike
information criterion (AIC), coefficient of determination (R2) and the phylogenetic signal (λ) as well as the estimates and p-values.
P-values reaching a significance level lower than 5% are indicated in bold.

N lat breeding Ln PFA # caretakers

Model AIC R2 λ estimate p-value estimate p-value estimate p-value

a) all species (N=469)

model A.1 -309.4 0.87 0.88 - - 0.027 0.002 - -

model A.2 -308.4 0.87 0.88 0.000 0.306 0.030 0.001 - -

model B.1 -304.1 0.87 0.89 - - - - 0.025 0.046

model B.2 -302.3 0.87 0.89 0.000 0.713 - - 0.026 0.044

model C.1 -308.4 0.87 0.88 - - 0.024 0.012 0.014 0.306

model C.2 -307.5 0.87 0.88 0.000 0.296 0.027 0.007 0.014 0.296

)
¯

passerines (N=221)

model A.1 -196.6 0.87 0.74 - - 0.036 0.002 - -

model A.2 -196.2 0.87 0.73 -0.001 0.214 0.029 0.022 - -

model B.1 -193.2 0.86 0.78 - - - - 0.035 0.016

model B.2 -196.2 0.87 0.76 -0.001 0.025 - - 0.033 0.024

model C.1 -196.7 0.87 0.74 - - 0.030 0.017 0.022 0.150

model C.2 -196.6 0.87 0.74 -0.001 0.169 0.021 0.119 0.024 0.120

c) non-passerines (N=248)

model A.1 -123.7 0.88 0.91 - - 0.025 0.063 - -

model A.2 -126.4 0.88 0.91 0.001 0.032 0.030 0.028 - -

model B.1 -120.4 0.88 0.91 - - - - 0.010 0.668

model B.2 -122.1 0.88 0.91 0.001 0.058 - - 0.018 0.439

model C.1 -121.8 0.88 0.92 0.026 0.068 -0.006 0.810

model C.2 -124.4 0.88 0.91 0.001 0.033 0.030 0.039 0.001 0.950

Table S4. Mean body mass (median in brackets) and mean number of caretakers for passerines (N=287) and non-passerine (N=347)
species.

Passerines Non-passerines

Body mass 1623.41 (531.4) 53.2 (22.7)

Caretakers 2.436 1.880
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Abstract

The expensive brain hypothesis claims that a high degree of experienced seasonality imposes an ener-

getic challenge, and thus acts as an evolutionary constraint on brain size. In contrast, but not mutually

exclusive, the cognitive buffer hypothesis claims that species with larger brains, which therefore show

increased cognitive and behavioural flexibility, are better at dealing with lean periods in seasonal

habitats. So far, the concomitant effects of the two hypotheses have only been systematically tested

within primate lineages (anthropoids and lemurs). However, to test the generality of the underlying

evolutionary patterns of brain size evolution, a broader mammalian comparison is needed. Here we

test the two hypotheses on brain size evolution in a sample of 41 non-primate mammals and compare

them with the primate findings. We find that species experiencing higher degrees of seasonality in

diet composition show smaller relative brain sizes, which is also the pattern found across primates.

However, we find only weak evidence for the cognitive buffer hypothesis, comparable to lemurs and

in contrast to anthropoid primates. In conclusion, current evidence suggests that energetic and thus

ecological constraints play a crucial role in mammalian brain size evolution, but that cognitive buffer-

ing seems to be less pervasive. We find tentative evidence that cognitive buffering is more likely in

large-brained mammals.

86



Social and Ecological Aspects of Brain Size Evolution
Chapter 4. Seasonality constrains brain size evolution among non-primate mammals

Introduction

The immense variation in brain size across species has long inspired evolutionary speculation. Many

theories have been proposed, particularly for primates, eventually trying to explain what factors led

to the most encephalized (i.e. brain size or neuron numbers relative to body mass) lineage within the

animal kingdom. A large brain entails not only fitness benefits through increased cognitive abilities

(Deaner et al. 2007) but also implies high energetic costs of production (Striedter 2005) and main-

tenance (Niven and Laughlin 2008), as well as delayed development (Isler et al. 2008, Isler 2011),

with negative fitness consequences. Nonetheless, most theories focus on either the cost or the benefit

perspective.

The cognitive buffer hypothesis (Allman et al. 1993, Sol 2009, Sayol et al. 2016) emphasizes the

benefit perspective. It suggests that large brains are beneficial in terms of enhanced cognitive flexibil-

ity, which allows individuals to better deal with changing ecological conditions, ultimately increasing

fitness. Therefore, the hypothesis predicts that larger-brained species are able to respond more flexi-

bly to seasonal changes in the environment. Fallback foods (e.g. underground storage organs, roots,

tubers) may not be easy to find and often demand complex and coordinated processing techniques

(Kaplan et al. 2000, Johnson and Bock 2004, Marshall and Wrangham 2007, Melin et al. 2014, Held-

stab et al. 2016). Switching to alternative food resources during lean periods of the preferred foods

minimizes fluctuations in the energetic input relative to fluctuations in environmental productivity

(e.g. Nagy and Gruchacz 1994: D. merriami ; Sidorovich et al. 2008: N. procyonoides; Melin et al.

2014: C. capucinus) and thus ultimately increases survival and longevity (Allman et al. 1993, Sol

2009).

The expensive brain hypothesis (Isler and van Schaik 2009) emphasizes the costs of brains. It claims

that an evolutionary increase in brain size is either constrained by the energy allocation to other

functions (e.g. growth, reproduction; Isler and van Schaik 2009) or by the total energetic input (Isler

2011, Isler et al. 2008, Pontzer et al. 2016). Brain tissue is one of the most expensive somatic tissues,

needing a continuously high supply of energy (Mink et al. 1981; Rolfe and Brown 1997, Bauernfeind

et al. 2014), and thus is very sensitive to periods of starvation. Seasonality, in terms of annual peri-

odicity in climate and environmental productivity, may lead to periods of severe food scarcity. In that

respect, the expensive brain hypothesis suggests that in highly seasonal habitats where the nutritional

demands during the lean season cannot be fulfilled by finding alternative food resources and thus the

costs of increased brain size cannot be offset, the degree of experienced seasonality is likely to act as

energetic constraint on brain size.

Recent work across primates has found support for both the expensive brain as well as the cogni-

tive buffer hypothesis (van Woerden et al. 2010, 2012, 2014). This work systematically distinguished

between experienced seasonality (i.e. annual variability in caloric composition of the diet = ener-

getic input) and environmental seasonality (i.e. annual variability in environmental productivity). It

showed, first, that species experiencing higher degrees of seasonality evolved relatively smaller brains,

across both anthropoids and lemurs (see also Taylor and van Schaik 2007). Second, in anthropoids,

but only to a lesser degree in lemurs, larger-brained species are better at keeping their experienced

seasonality constant relative to the seasonality in the environment, supporting the notion of cognitive

buffering.

Taken together, whereas the expensive brain pattern seems to be ubiquitously applicable across the
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entire primate lineage, the cognitive buffer hypothesis applies primarily to anthropoids. In order to

disentangle whether the more encephalized anthropoids are special or whether lemurs represent the

exception, and thus eventually understand the importance of seasonality in the evolution of our own

species’ unmatched degree of cognition, these patterns need to be evaluated in a broader comparative

context that also includes non-primate mammals. Outside the primate clade, comparative tests of the

two hypotheses, particularly in relation to seasonality, is very limited. The only other mammalian

study, focusing on marsupials, found a negative relationship between environmental seasonality and

relative brain size, implying a lack of buffering and supporting the cost perspective of brain size evolu-

tion (Weisbecker et al. 2015). Among birds, the opposite was found: several studies have shown that

species living in in harsher and more seasonal habitats tend to have larger brains, implying cognitive

buffering (Schuck-Paim et al. 2008, Vincze 2016, Sayol et al. 2016).

These studies found clear effects of environmental seasonality, which permits unambiguous conclu-

sions. However, an absence of an effect of environmental seasonality would not allow us to reject the

cognitive buffering or expensive brain hypothesis, because the combination of the two effects might

balance out. Thus, only if the annual variability in the actual experienced seasonality followed the

fluctuations in environmental productivity, i.e. if there was no buffering, would it be justified to use

external, environmental indicators to test seasonality’s relationship with brain size. It is therefore best

to use the distinction between experienced and environmental seasonality (van Woerden et al. 2010,

2012, 2014).

Here, we test the conjoint effects of the expensive brain and cognitive buffer hypotheses across a

broad set of non-primate mammals. First, in order to assess whether we need to distinguish between

environmental and experienced seasonality, we test the relationship between the actually experienced

seasonality, as expressed in seasonal changes in diet composition, and the environmental seasonality,

as represented by fluctuations in the habitat productivity. Next, we test predictions. The cognitive

buffer hypothesis predicts a positive correlation between the degree to which experienced seasonality

is buffered relative to environmental seasonality and relative brain size, whereas the expensive brain

hypothesis (which is not mutually exclusive with the cognitive buffer hypothesis) predicts that species

with higher degrees of experienced seasonality to show smaller relative brain sizes. Finally, we put

these results into a broader perspective by additionally including the data from the previous studies

of primates, including anthropoids and lemurs (data based on van Woerden et al. 2014). The data for

non-primate mammals are given in a supplementary data table.

Strict carnivorans and strict herbivores are not included in this study since seasonal variation in diet

composition does not represent the fluctuations in their energetic input (i.e. experienced seasonality)

as their diets vary in amount ingested but not (much) in composition. We also did not include marine

mammals, as the quantification of marine environmental seasonality is not possible with the available

measures of environmental productivity (see Material and Methods).
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Material and Methods

Seasonality Data

After an extensive literature search we compiled detailed data of seasonal diet composition on 41

non-primate mammalian species, consisting of 29 Carnivora, 11 Rodentia and 1 Artiodactyla.

The quantification of experienced and environmental seasonality as well as the amount of buffering

follows van Woerden et al. (2010, 2012, 2014): The estimate of the actually experienced seasonality

in terms of fluctuations in the energy input throughout the year is based on the monthly diet compo-

sition of a species compiled from the published literature (references see supplementary material). For

the vast majority of species diet composition data was available for at least nine consecutive months

(N=28) or is based on every second month (N=8), whereas for a few, only condensed measures of

the four seasons were available (N=6). To assess robustness, all analyses were repeated excluding

the species where only condensed measures of the four seasons are available. For the quantification

of experienced seasonality, first, we classified the diet categories into five levels of varying nutritional

value (blood/milk/egg > meat > insects/crustaceans > fruits/seeds/tubers > leaves/green fodder)

according to the food classification by Langer (2002). Second, we multiplied the percentage of each

level in the diet (as estimated by percentage of occurrence) with its nutritional value (80 for meat, 13

for insects/crustaceans, 5.5 for fruits/seeds/tubers and 2 for leaves /green fodder, based on crude fibre

content from Langer 2002) and finally, we calculated the coefficient of variation (CV) over the year in

the food category with the highest nutritional value which represents at least 10% of the mean annual

proportion, best representing variation in the energetic input (CV diet) (see also van Woerden et al.

2010). However, since the current set of species largely consists of omnivorous species, the highest

nutritional component might not be representative of the total energetic input. Therefore, we addi-

tionally calculated the sum of all categories per month and calculated its yearly CV, as representing

the degree of seasonal variation of the total energy input (CV total diet, the corresponding analyses

are shown in the supplementary material).

For environmental seasonality, we calculated the CV in the monthly plant productivity, given by

the Normalized Difference Vegetation Index (NDVI) (CV NDVI). The data was extracted from the

GIMMS database (Tucker et al. 2005) and was geographically matched to the study sites of the diet

composition data (see also van Woerden et al. 2010). Where data on different populations or over

several years were available, average CVs were calculated. For hibernating species (M. meles, S. tride-

cemlineatus, U. americanus, U. arctos, U. thibetanus) the calculation of the CV is based on the whole

year with the proportion of all diet components set to zero during the inactive months, as this best

represents the actual experienced seasonality.

The degree of buffering seasonality is given by the difference between the environmental and experi-

enced seasonality (degree of buffering = CV NDVI - CV diet).

Brain and body size data

Brain size volume was measured with the glass-beads-filling method from a total of 259 adult female

specimens from three American museums (American Museum of Natural History, New Work; National

Museum of Natural History, Washington D.C.; Field Museum of Natural History, Chicago). If fewer

than 5 specimens per species were available (N=10 species), data on female (to exclude dimorphism)

brain size was complemented from the published literature (details in supplementary information).

Data given in brain mass [g] was converted to brain volume based on Isler et al. 2008 (1.036 g = 1 cc).
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Data on mean female body mass was also taken from the published literature (details in supplementary

information). The relative brain sizes of the different species are illustrated in Fig. 4.1. Since we are

interested in the effect of a potential energetic constraint, we test for relationships with relative brain

size, by incorporating body mass as a covariate in all our phylogenetic regression analyses.

Figure 4.1: Phylogenetic Tree: Relative Brain Size Data. Phylogenetic tree of the 41 species with colors on the branches from blue to
red indicating increasing brain size relative to body mass (residuals of ln brain vs. ln body).

Statistical Analysis

Due to the common evolutionary history between species, methods controlling for phylogenetic non-

independence are required. We used phylogenetic least-squares regressions (PGLS, package caper,

Orme 2013) and phylogenetic logistic regression (PLR, package phylolm, Ho and Ané 2014) incorpo-
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rating the degree of phylogenetic inertia by estimating the phylogenetic signal lambda (Pagel 1999)

and alpha (Ives and Garland 2010), respectively. The corrections for phylogenetic dependence are

based on the mammalian super tree published in Fritz et al. 2009 (Fig. 4.1). To meet the model

assumptions of evenly distributed residuals around zero, brain size, body mass, CV NDVI and CV diet

were loge transformed prior to the PGLS analyses. From the definition of the degree of buffering, it

is by necessity negatively correlated with experienced seasonality. Therefore, experienced seasonality

needs to be additionally included as a covariate when testing for cognitive buffering (see also van

Woerden et al. 2014).

All analyses and plots were run in the R programming language (R development core team, 2015) and

the raw data is tabulated in the supplementary material in Table S4.
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Results

Our results show that there is no relationship between experienced and environmental seasonality.

This establishes that at least in some species the annual variability in diet (CV diet) does not follow

the annual variability in habitat productivity (CV NDVI), and thus the environmental seasonality is

buffered (Table 4.1A, Fig. 4.2A,B).

In accordance with the energetic constraint perspective of brain size evolution, we found that species

experiencing greater fluctuations in dietary composition (i.e. higher CV diet) show smaller relative

brain sizes. This effect is even stronger in the combined sample that includes the primate data (Table

4.1B; Fig. 4.2C,D).

And finally, the data reveals only weak evidence for a cognitive buffer effect when testing the effect

of relative brain size on the difference between environmental seasonality and the actual fluctuations

in diet (i.e. degree of buffering). For both the non-primate mammals and the combined sample we

find a statistical trend (Table 4.1C; Fig. 4.2E,F). The effect is slightly stronger if hibernating species

are excluded, reaching significance in the combined sample (Table S1). Notice that species showing

strong cognitive buffering tend to have smaller body size, although the effect is significant in neither

the non-primate nor the combined sample. Please note again that from the definition of the degree

of buffering we need to additionally include experienced seasonality as a covariate when testing for

cognitive buffering (see also van Woerden et al. 2014).

Very similar, but slightly weaker effects are found if the annual variability in diet is calculated in

a different way in terms of total diet composition (CV total diet), or if we omitted those six species

for which CV diet was determined from a condensed measure of the four seasons (Table S2, S3).
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Table 4.1: Seasonality and Brain Size. PGLS regression testing (A) the relationship between experienced and environmental seasonality,
(B) the expensive brain hypothesis (by examining the effect of experienced seasonality on relative brain size), and (C) the cognitive
buffer hypothesis (by examining the effect of relative brain size on the degree of buffering), in the set of non-primate mammals (top)
and all mammals additionally including primates (anthropoids and lemurs) (bottom). Shown are the number of species (N), coefficient
of determination (R2), strength of the phylogenetic signal (λ), and the estimate and the p-value of the predictor variables. Statistical
significance (p<0.05) is indicated in bold font, and statistical trends (0.05 < p-value < 0.1) in italics.

Non - primate mammals N R2 λ predictor estimate p-value

A) Experienced seasonality

(ln CV diet)
41 0.00 0.55

environmental seasonality

(ln CV NDVI)
0.070 0.680

B) ln brain size 41 0.95 0.66 ln body 0.664 <0.001
experienced seasonality

(ln CV diet)
-0.094 0.031

C) Buffering seasonality

(CV NDVI - CV diet)
41 0.76 0.00 ln body -0.148 0.069

experienced seasonality

(ln CV diet)
-0.305 <0.001

ln brain 0.190 0.090

All mammals

A) Experienced seasonality

(ln CV diet)
115 0.00 0.89

environmental seasonality

(ln CV NDVI)
0.059 0.541

B) ln brain size 115 0.90 0.93 ln body 0.695 <0.001
experienced seasonality

(ln CV diet)
-0.087 0.001

C) Buffering seasonality

(CV NDVI - CV diet)
115 0.48 0.81 ln body -0.088 0.060

experienced seasonality

(ln CV diet)
-0.156 <0.001

ln brain 0.119 0.060
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Figure 4.2: Seasonality and Brain Size. Testing the expensive brain and cognitive buffer hypothesis based on the distinction between
environmental and experienced seasonality. (A, B) Relationship between environmental and experienced seasonality. (C, D) The rela-
tionship between relative brain size and experienced seasonality (expensive brain hypothesis). (E, F) Relationship between the degree of
buffering (residuals of degree of buffering vs. ln CV diet) and relative brain size (residuals of ln brain size vs. ln body mass) (cognitive
buffer hypothesis) for non-primate mammals (N=41, top panels A, C, and E) and the overall mammalian sample including additionally
primates (anthropoids and lemurs) (N=115, bottom panels B, D, and F).
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Discussion

In our sample of non-primate mammals, the degree of experienced seasonality does not follow the

degree of environmental seasonality, suggesting that several species exposed to severe periods of low

habitat productivity are able to keep the energetic input more constant throughout the year, i.e. buffer

their environmental seasonality. This means for our data that exclusively environmental indicators

and its effect on brain size do not allow us to draw conclusions about the expensive brain and cognitive

buffer hypothesis and that the distinction between environmental and experienced seasonality is thus

critically important. Together with the earlier work in primates (van Woerden et al. 2010, 2012,

2014), these are the first studies to distinguish between environmental and experienced seasonality

and thereby to explicitly quantify the degree of buffering.

Cognitive Buffer Hypothesis

The degree to which experienced seasonality is buffered relative to environmental seasonality is only

weakly associated with relative brain size among non-primate mammals. In contrast to the findings

in anthropoid primates (van Woerden et al. 2012, 2014), the cognitive buffer hypothesis is thus not

strongly supported as a general pattern among mammals. In fact, the ambiguous cognitive buffer

effect in the current set of non-primate species is comparable to the one found in lemurs. We suggest

two non-exclusive reasons to explain this discrepancy.

First, the extremely high metabolic and developmental costs of increased brain size (Striedter 2005)

make cognitive buffering only feasible in species where levels of extrinsic mortality and the costs for

brain growth and maintenance are relatively moderate, which particularly applies to large-bodied

species with slow life histories (cf. van Woerden 2011). All non-primate species included in the cur-

rent study, with a few exceptions (bear species and the wild boar), as well as lemurs, show relative

small body sizes and rather fast life histories compared to anthropoids (Table 2), which drastically

reduces the net cognitive benefit of a large brain. In other words, the so-called life-history filter (cf.

van Schaik et al. 2012) may impede a positive effect of cognitive buffering on fitness.

Second, in some environmental conditions cognitive buffering may simply not be a feasible strat-

egy. Extremely high degrees of environmental seasonality lead to periods of unavoidable starvation

(i.e. effective food availability below maintenance level), in which cognitive buffering brings no survival

benefits. With an increasing degree of environmental seasonality, and thus the chance for periods of

unavoidable starvation, selection is probably likely to favor a diet composition that is less affected by

environmental seasonality. Most species included in our study rely on a largely omnivorous diet, where

meat as a high quality and constant food resource often represents a stable component. And our data

shows, indeed, that those species living in more extreme habitats have a higher proportion of meat in

their diet (PGLS: N=41, R2=0.11, λ=0.82, response: % meat in diet, predictor: CV NDVI: estimate=

43.06, p-value=0.035). The food processing of animal prey per se, however, seems not to necessarily

require enhanced cognitive abilities, as suggested by a recent study among carnivorans (Schuppli and

Graber et al. 2016). In primates, on the other hand, the highest quality foods are usually fruits and

invertebrates, which are highly sensitive to seasonal variation, and their spatio-temporal distribution

over the year in combination with complex processing seem to depend on enhanced cognition (van

Woerden et al. 2010, 2012, 2014; Melin et al. 2014; Schuppli and Graber et al. 2016). To over-

come unavoidable starvation, physiological adaptations in terms of fat reserves and hibernation are

probably most likely, apart from dietary adaptions, which also do not explain how non-carnivorous

mammals, including lemurs, overcome lean periods in extremely seasonal habitats (Heldstab et al.
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2016). Physiological buffering is indeed, mostly found among non-primate mammals, which in our

sample include bears (U. arctos, U. americanus, U. thibetanus), badgers (M. meles) and squirrels (S.

tridecemlineatus), and among primates in lemurs only. Our data confirms that with increasing habitat

seasonality, hibernation is more likely (PLR: N=41, alpha= 0.027, response: hibernation, predictor:

CV NDVI: estimate= 6.46, p-value=0.032). Cognitive buffering and physiological buffering strategies

have been shown to be compensatory across mammals (Navarrete et al. 2011, Heldstab et al. 2016,

Veitschegger 2017). The results of analyses of the current data in non-primates and the combined

sample including all mammals show that if we exclude hibernating species, statistical support for a

cognitive buffer effect increases, which highly supports the trade-off between cognitive and physiologi-

cal buffering. Taken together, high levels of extrinsic mortality and extreme environmental conditions

make cognitive buffering less feasible in non-primate mammals and lemurs and instead favor a general

switch in diet towards seasonally more stable food resources and/or physiological strategies such as

hibernation (Table 4.2).

Although the sample sizes in our set of species are more than sufficient to detect a cognitive buffer

effect, we could not exclude some methodological artifacts and thus the conclusions remain somewhat

preliminary. First, the variability in the NDVI used as a proxy for environmental seasonality might

not be ideal, particularly in extreme habitats, which are largely covered by snow during low-food

seasons, implying disproportionally low NDVI values. Second, many of the non-primate species rely

to a considerable extent on animal prey where the NDVI might not be representative of the actual

food availability (i.e. environmental seasonality). Therefore, to consolidate these conclusions for an

even broader set of species, an assessment of environmental seasonality directly reflecting prey/food

availability would be very useful. This would also allow us to include strict carnivorans, but for them

we would also like to have direct measures of the seasonal variation in the actual energetic input (and

thus in energy expenditure, i.e. in field metabolic rates). Currently, however, data on prey availability

as well as on field metabolic rates have not been collected for a large enough number of species to

allow interspecific comparisons.

Unlike in non-primate mammals, in birds different studies strongly suggest that cognitive buffer-

ing is an abundant phenomenon as species living in more seasonal habitats tend to have larger relative

brain sizes (Schuck-Paim et al. 2008, Vincze 2016, Sayol et al. 2016). This fundamental difference

may be explained the high degree of mobility in birds which enables them to easily explore and sample

other habitats (cf. van Woerden et al. 2010). This way, animals can go from peak abundance to peak

abundance and reach an average level of food intake that is even higher and more stable than staying

in one place and buffer as much as possible. This idea can be tested by studying tropical bats. If bats

are like birds, it is supported; if they are like other mammals, there may be a fundamental difference

between birds and mammals.

Expensive Brain Hypothesis

Testing for the effect of experienced seasonality, we find that species experiencing higher degrees of

fluctuations in the most energy-dense diet components exhibit relatively small brains, which is in

concordance with the findings across primate lineages (van Woerden et al. 2010, 2012, 2014). In the

combined mammalian sample including primates the effect is even more pronounced, and suggests

that periods of reduced energy intake are generally not compatible with relatively large brains, as

proposed by the expensive brain perspective.
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It is well known that nutritional stress and malnutrition strongly affects brain development (Lukas and

Campbell 2000) and also that brain maintenance requires a continuous supply of energy (Mink et al.

1981). Further, previous evidence from mainly intraspecific studies also suggest that crucial resource

shortages and short growth seasons are related to a reduction in brain size, also outside of the primate

clade (Köhler and Moyà-Solà 2004; Niven 2005, 2007; Taylor and van Schaik 2007; Weston and Lister

2009, Jiang et al. 2015). Together with the findings across primates (van Woerden et al. 2010, 2012,

2014) and marsupials (Weisbecker et al. 2015), the evidence from our interspecific study confirms the

fundamental assumption of the expensive brain hypothesis, namely that animals with periodic troughs

in energy intake, reaching its apogee in hibernating species, are unable to maintain large brains due

to the inability of brains to cope with temporary reductions in energy supply. The persistent negative

relationship between brain size and experienced seasonality suggests that, even though there is buffer-

ing going on (based on the absent relationship between environmental and experienced seasonality),

it is apparently never strong enough to compensate for the high energetic requirements of a relatively

large brain. We suggest that selection in favor of improved ecological conditions, comprising a stabi-

lized energy intake and increased survival, is most crucial in the evolution of brain size and cognition

(Graber et al. in review).

In conclusion, with this study we show that the expensive brain hypothesis applies in all examined

mammalian groups so far, underscoring once again the importance of an ecological perspective on

brain size evolution (van Woerden et al. 2010, 2012, 2014, Graber et al. in review). The phenomenon

of cognitive buffering, however, appears to be less common in mammals in general, possibly existing as

an exclusive strategy only in anthropoid primates (Table 4.2). We suggest, that only where extrinsic

ecological conditions enable higher levels of cognition and behavioral flexibility to produce energetic

benefits, cognitive buffering is favored as a strategy to overcome seasonally lean periods. This is in

line with a recent finding among primates, showing that only where ecology paved the way for the evo-

lution of enlarged brains, more complex eco-and socio-cognitive abilities including cognitive buffering,

are possible (Graber et al. in review).

Table 4.2: Comparison of non-primate mammals vs. primates. Comparison of characteristics of non-primate mammals (current study)
with lemurs and anthropoid primates (van Woerden et al. 2010, 2012, 2014).

Taxa
Expensive

brain

Cognitive

buffering

Life-history filter

(median body mass [g] and AFR [d])
Alternative buffering

Non-primate mammals

(current study)
X (X)

high

(2250; 364)

- shift in diet -> energy rich food (meat)

- fat storage and hibernation

Lemurs

(van Woerden et al. 2010)
X (X)

medium

(1908; 972)

- fat storage and torpor/hibernation

(Dausmann et al. 2004, Schülke and Ostner 2007)

- reduced BMR (Genoud 2002)

- extreme birth seasonality

(Janson and Verdolin 2005)

Anthropoid primates

(van Woerden et al. 2012, 2014)
X X

low

(5383; 1800)
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Supplementary Material

Tables S1-S3 present results for slight alterations of dataset in order to investigate the robustness of

the results.

Table S1. Excluding hibernating species. PGLS regression testing the relationship between the degree of buffering seasonality and relative
brain size in the set of non-primate mammals (top) and all mammals additionally including primates (anthropoids and lemurs) (bottom).
Given are the sample size (N), coefficient of determination (R2), phylogenetic signal (λ) as well as the estimate and the p-value of the
predictor variables.

Non-primate mammals N R2 λ predictor estimate p-value

Buffering seasonality

(CV NDVI - CV diet)
36 0.70 0.00 ln body -0.125 0.095

experienced seasonality

(ln CV diet)
-0.240 <0.001

ln brain 0.189 0.065

All mammals (inlcuding primates)

Buffering seasonality

(CV NDVI - CV diet)
108 0.50 0.45 ln body -0.066 0.094

experienced seasonality

(ln CV diet)
-0.139 <0.001

ln brain 0.109 0.038

Table S2. Experienced seasonality measured as the coefficient of variation of the dietary composition summed over all food cate-
gories (CV total diet) in non-primate mammals. PGLS regression testing (A) the relationship between experienced and environmental
seasonality, (B) the expensive brain hypothesis by the effect of experienced seasonality on relative brain size, and (C) the cognitive buffer
hypothesis by the effect of relative brain size on the degree of buffering. Given are the sample size (N), coefficient of determination (R2),
phylogenetic signal (λ) as well as the estimate and the p-value of the predictor variables.

Response N R2 λ predictor estimate p-value

A) Experienced seasonality

(ln CV total diet)
41 0.00 0.62

environmental seasonality

(ln CV NDVI)
0.048 0.759

B) ln brain size 41 0.94 0.70 ln body 0.665 <0.001
experienced seasonality

(ln CV total diet)
-0.092 0.053

C) Buffering seasonality

(CV NDVI - CV total diet)
41 0.62 0.44 ln body -0.132 0.194

experienced seasonality

(ln CV total diet)
-0.289 <0.001

ln brain 0.193 0.186
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Table S3. Excluding the six species for which CV diet was derived from condensed measures of the four seasons (non-primate
mammals). PGLS regression testing (A) the relationship between experienced and environmental seasonality, (B) the expensive brain
hypothesis by the effect of experienced seasonality on relative brain size, and (C) the cognitive buffer hypothesis by the effect of relative
brain size on the degree of buffering. Given are the sample size (N), coefficient of determination (R2), phylogenetic signal (λ) as well as
the estimate and the p-value of the predictor variables.

Response N R2 λ predictor estimate p-value

A) Experienced seasonality

(ln CV diet)
35 0.03 0.20

environmental seasonality

(ln CV NDVI)
0.194 0.340

B) ln brain size 35 0.95 0.63 ln body 0.655 <0.001
experienced seasonality

(ln CV diet)
-0.088 0.061

C) Buffering seasonality

(CV NDVI - CV diet)
35 0.75 0.00 ln body -0.147 0.101

experienced seasonality

(ln CV diet)
-0.295 <0.001

ln brain 0.183 0.140
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Abstract

Primates evolved the largest brains relative to body size among mammals, and humans evolved the

largest brains among primates. Whether these increases were driven by social or ecological selec-

tive benefits is vigorously debated. In this comparative study we offer a new conceptual approach,

which systematically distinguishes between opportunities (potential selective drivers) and immediate

consequences, and also include a comprehensive set of both social and ecological variables across a

broad sample of primate species. The results of multivariate analyses show that selection on brain size

reflects ecological rather than social opportunities, but that increased encephalization also engenders

general behavioral flexibility, and therefore predicts cognitive complexity in both the ecological and

social domains equally well. In conclusion, this study demonstrates that advanced social and ecological

cognitive abilities in primates could only become prominent in lineages where the evolution of large

brains, with their attendant energetic costs, was enabled by favorable ecological preconditions.
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Introduction

The massive variation in brain size relative to body size found across animals has led to long-standing

debates on its evolutionary explanation (Jerison 1973, Striedter 2005). Much of this effort has fo-

cused on primates, and especially humans, due to their unmatched degree of encephalization and

concomitant cognitive abilities. The most prominent hypothesis suggests that enhanced cognition is a

prerequisite for dealing with the complexities of social life (the social brain hypothesis, Dunbar 1998).

Dunbar (2016) recently concluded that there ”is a general consensus that the prime mover in primate

brain evolution (and perhaps even that of all mammals and birds) is the evolution of more complex

forms of sociality”. Indeed, various features of social group living, including group size, clique size or

the presence of coalitions, explain much interspecific variation in the size of primate brains or their

regions (Dunbar and Shultz 2007a). However, some have proposed that solving ecological problems,

such as extraction of hidden foods or general behavioural flexibility in response to environmental fluc-

tuations, requires higher levels of cognition and ultimately drove the evolution of enlarged brains (the

technical intelligence and cognitive buffer hypotheses, Allman et al. 1993, Byrne 1997, Parker and

Gibson 1977). These ideas also received some comparative support (Clutton-Brock and Harvey 1980,

Deaner et al. 2000, Heldstab et al. 2016, DeCasien et al. 2017). Thus, although the social brain

hypothesis is widely supported and well known, it is important to reassess the relative explanatory

power of these various models.

Previous comparative tests of these hypotheses had three shortcomings, all of which we address in the

current study. First, although during the past two decades the social brain hypothesis has achieved

the status of common knowledge, it does not explain striking differences in brain size within primates

and other mammalian lineages (Holekamp 2007, Holekamp et al. 2015, van Schaik et al. 2012), and

its explanatory power also has rarely been systematically compared with that of ideas postulating

ecological selective benefits (Holekamp 2007, van der Bijl and Kolm 2016, but see Dunbar and Shultz

2007b; DeCasien et al. 2017), even though they are not mutually exclusive.

Second, it is becoming increasingly clear that primates show general cognitive flexibility, which across

species is closely linked to brain size (Deaner et al. 2007, Reader et al. 2011). Therefore, cognitive

abilities in the ecological and social domains should be equally improved by selection on larger brains,

irrespective of the nature of the selective agent. Thus, we run the risk of mistaking the cognitive

consequences of brain size for the selective agents that favored the evolution of larger brains. Previous

studies have tended to interpret all correlates of increased brains as selective agents.

Third, previous tests of the selective agents favoring brain size evolution rarely acknowledged the fact

that large brains require an energy supply that is both unusually high and non-fluctuating (Lukas and

Campbell 2000, Niven and Laughlin 2008), and also require a longer period of learning and practice

before being fully functional and able to produce actual fitness benefits (Schuppli and Graber et al.

2016). Consequently, increased brain size in response to any cognitive selective agent can only evolve

in lineages where its positive fitness impact outweighs the negative fitness effects of the additional

energetic costs and loss of time due to slower development (Isler and van Schaik 2012). The same

cognitive benefit may therefore lead to an increase in relative brain size in some lineages but not in

others, depending on whether it leads to a net increase in energy intake.

To remedy these shortcomings, we introduce a new conceptual approach, where we distinguish between

potential selective agents (i.e. opportunities) that enabled the evolution of large brains and cognitive

abilities that are a direct result of having a brain of particular size (i.e. consequences) and also include

a wide range of social and ecological variables. Social and ecological variables represent opportunities
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if they provide necessary but not sufficient conditions for the evolution of increased brain size. They

facilitate the evolution of larger brains only in case its costs and constraints (unavoidable mortality due

to predation and starvation, life-history filter, cf. van Schaik et al. 2012) can be offset. For instance,

living in a large multi-male, multi-female group with tendencies towards polygynandrous mating sys-

tem does not per se require a large brain, but it does represent an opportunity for the evolution of

enhanced socio-cognitive abilities (and thus brain size), such as recognizing third-party dominance

relations, forming intersexual social bonds or the capacity for opportunistic coalition formation.

Likewise for ecological opportunities, species with a high-energy or less seasonal diet may have more

opportunities to respond to selection favoring larger brain size than those with a less energy-dense

or more seasonal diet. Furthermore, a highly seasonal habitat poses the ecological challenge of how

to deal with food scarcity. During the low food season, greater cognitive abilities may be beneficial

for the recognition and exploitation of alternative foods resources. However, because lean seasons can

also be responded to in other ways (e.g. hibernation, fat storage: Heldstab et al. 2017), seasonality

is merely an opportunity variable for increased encephalization and an increase in brain size is not a

necessary requirement. The same holds for other habitat characteristics such as substrate use, activity,

predation risk and ranging behavior, which represent external conditions that may favor, but do not

necessitate an enlarged brain.

Consequence variables are a direct result of selection on relative brain size, and a large brain is therefore

a necessary precondition in order for these traits to be present. Possible examples include opportunis-

tic coalitionary interventions among non-relatives or routine tool use. If these abilities are cognitively

demanding, they could not have selectively favored their own presence.

We will test the validity of this important distinction between opportunities and consequences based

on the following assumptions and predictions. First, the evolutionary paths from opportunities to

brain size and from brain size to consequences should receive substantially higher statistical support

than any other possible directions. Second, because the same selective agent may lead to an increase

in brain size in some lineages but due to energetic constraints not in others, we predict that opportuni-

ties, be they social or ecological, show weaker relationships with relative brain size than the cognitive

consequences. Third, under the general intelligence interpretation, cognitive abilities in both the social

and the ecological domain are direct consequences of selection on larger brain size. Thus, we predict

that social and ecological consequences not only show a strong correlation with brain size, but also

show a very strong interrelationship, whereas social and ecological opportunities should not.

We used a multivariate statistical approach including over 30 ecological and social variables across

a broad range of primate species (Fig. S1, Table S1). First, we defined variables as social and ecologi-

cal opportunities and consequences, and then each of these four types of variables was condensed into

one or two summary variables using phylogenetic principal component analysis (pPCA, Revell 2009).

Next, we used a phylogenetic path analysis (von Hardenberg and Gonzalez-Voyer 2013, Gonzalez-

Voyer and von Hardenberg 2014) and phylogenetic least squares regressions (PGLS, Grafen 1989) to

test both the multidirectional and unidirectional relationships between the principal components (PC)

and brain size.. The raw data used in this paper are tabulated as a supplementary data table.
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Material and Methods

Data - Brain Size and Body Mass

Data on brain size and body mass were retrieved from Isler et al. (2008) and Isler and van Schaik (2012)

which are preferentially based on female values due to sexual dimorphism. Brain size and body mass

data on Presbytis potenziani, Phaner furcifer and Brachyteles arachnoides was supplemented based

on van Woerden (2011). Because body mass shows significant effects on all the response variables

(brain size, social and ecological consequence principal components), it is a necessary covariate in our

models.

We tested associations with the size of the whole brain (controlled for body mass) for several reasons.

The increasing body of evidence for general intelligence (Burkart et al. 2016) argues that the challenges

posed by the socio-ecological environment (compound of the measures used in this study) do not have

neural correlates in specific neuronal structures but most likely have impacts throughout the whole

brain. In fact, it has been shown that cognitive problem solving abilities rely most likely on circuits

involving multiple brain parts (Anderson 2010, Barton 2006). Along the same lines, the so-called

reuse theory suggests that recombination of neural structures permits different cognitive functions

(Anderson 2010), contradicting a modular brain organization. Furthermore, the sizes of particular

brain areas are highly correlated with overall brain size (Barton and Harvey 2000, Finlay et al. 2001,

Striedter 2005) and from the cost perspective, energetic and developmental constraints largely reflect

the size of the brain in general rather than that of particular regions. Quite apart from all of this,

data to date on individual brain parts are still highly limited.

Data - Social and Ecological Opportunities/Consequences

Social and ecological opportunity variables provide necessary but not sufficient conditions for the evo-

lution of increased brain size. They indicate potential selective agents that may allow for an increase

in brain size in some lineages, but not in others, depending on the strength of developmental and

energetic constraints.

For social opportunities we collected species-level data on various social traits including social orga-

nization, and mating and rearing system. We included characteristics that have either been used in

previous primate studies to test the social brain hypothesis or are closely related to those (reviewed

in Healy and Rowe 2007). Complete data on all social opportunity variables was available for N=67

species.

For ecological opportunities, we collected data on various environmental and dietary traits that have

been used in earlier studies (reviewed in Healy and Rowe 2007) or estimate additional niche charac-

teristics that do not necessarily presuppose enhanced cognitive abilities, but may represent selective

agents for them. Complete data on all ecological opportunity variables was available for N=50 species.

For the socio-and eco-cognitive consequence variables we selected measures assumed to reflect a higher

degree of cognitive abilities, several of which have been shown to be related to brain size in previous

studies (e.g. Reader et al. 2011). Complete data on the socio- and eco-cognitive consequences were

compiled for N=60, and N=53 species, respectively. A total of 92 species, which are evenly distributed

across the various primate lineages (Fig. S1), were included in the four domains (social and ecolog-

ical opportunities, social and ecological consequences). The overlapping common sample includes a

reduced sample size of N=29 species. Table S1 provides the descriptions and the numerical codings

for all variables.

Data on the social and ecological opportunity and consequence variables are established and vali-

dated measures and were retrieved from published comparative studies as well as major mammalian
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encyclopedias, including the Handbook of the Mammals of the World (Mittermeier et al. 2013) and

the Animal Diversity Web (Myers et al. 2006) (detailed references are given in the Supplementary

Data Table). Due to a broad range of species as well as the large compilation of variables, several

variables rely on multiple references. In case of multiple possible values based on within-species vari-

ation (between-population variation), we assigned the value representing the potentially highest level

of complexity in a species. In concordance with our hypotheses, the highest level of complexity in

opportunities presumably represents the predominating selective agent on enlarged brain size and in

case of consequences, it reflects the potentially most complex consequence of enlarged brain size. For

example, species which show variation in mating systems and can be either polygynous or polygynan-

drous were classified as polygynandrous.

For species where no data was available for limiting variables, such as visual trait dimorphism or

environmental seasonality, no data for other variables were collected, even though they might be avail-

able. For others where data were not available from the main compilations, they were added based on

single references, or in case of predation risk and food sharing were classified according to the original

reference.

We followed the latest taxonomy according to the IUCN red list (2016) and adapted the data compi-

lation accordingly.

Statistical Analysis

Due to the broad set of different variables we first applied phylogenetic principal component analyses

(pPCA, Revell 2009; package phytools, Revell 2012) in order to get a limited number of measure-

ments, i.e. principal components (PC). Since the main aim of the study was to test the hypothesized

evolutionary relationships within the framework of relative brain size and both, ecological and social

opportunities and consequences, a pPCA was applied to each of the four domains separately. For that

reason, and since a pPCA is not per se able to detect biologically/evolutionarily meaningful clusters

and therefore not be able to logically distinguish between opportunities and consequences, an appli-

cation over all variables would not serve the purpose of this study.

Primarily, categorical variables were numerically quantified based on increasing complexity of a trait

(Table S1) and the pPCAs were performed on the mode of a correlation matrix due to different scal-

ing of the variables. For subsequent analyses the PCs explaining a major part of the variation were

used (cumulative proportion ≥ 40%). To facilitate intuitive interpretation, signs of all factor loadings

from a PC were reversed if necessary, so that its values increased with increasing complexity of the

traits (note that a systematic reversal of the sign of factor loadings does simply reverse the sign of the

PC, and thus does not influence the sizes but only the directions of the effects in subsequent PGLS

regressions). The separate pPCAs are based on the maximum sample sizes of each of the four domains

(social opportunities: N=67, ecological opportunities: N=50, social consequences: N=60, ecological

consequences: N=53) so that none of the available information is lost.

In a second step, we ran a phylogenetic path analysis (von Hardenberg and Gonzalez-Voyer 2013,

Gonzalez-Voyer and von Hardenberg 2014) in the package phylopath (van der Bijl 2017) in order to

test for the multidirectional evolutionary paths within the conceptual framework of opportunities and

consequences. We compared a total of 28 candidate models, where the main evolutionary paths point

in the four possible directions (Fig. S2 - S5, indicated with A, B, C, D), with each of the basic models

(Path models: A1, B1, C1, D1) including all five possible paths representing the interrelationships

within the opportunities and consequences, respectively (Path models: A2-A7, B2-B7, C2-C7, D2-D7).

Path models A (Fig. S2) build up on our hypothesized framework stating that opportunities facilitate

the evolution of enlarged brains and the consequences are its direct results, whereas path models B
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(Fig. S3) would claim the opposite evolutionary directions. Path models C (Fig. S4) would postulate

that all four domains (social and ecological opportunities and consequences) act as selective agents

on the evolution of brain size, suggesting that what we hypothesize as consequences also serve in the

end as opportunities/drivers. For the sake of completeness, we also included path models D (Fig.

S5), which propose that all variables included in this study are evolutionary consequences of enlarged

brain.

Since the path analysis does not allow for cyclic, but only acyclic graphs, the interrelationships within

opportunities and consequences include either the direction from the ecological to the social domain

or the other way around. The best fitting models were chosen based on the corrected C statistic Infor-

mation Criterion (CICc) (Gonzalez-Voyer and von Hardenberg 2014), a goodness of fit measurement

based on the Akaike Information Criterion (Akaike 1974), with a ∆CICc smaller than 3. Subsequently

we averaged the best fitting models weighted by the relative evidence (van der Bijl 2017). As a mea-

surement of relative brain size within the path analysis we used the log brain size - log body mass

residuals. The path analysis is based on the common sample of N=29 species.

In a third step, we tested the unidirectional associations between the PCs and relative brain size using

phylogenetic least-squares (PGLS) regressions. These analyses are based on the maximum available

sample sizes of the four domains (social opportunities: N=67, ecological opportunities: N=50, social

consequences: N=60, ecological consequences: N=53) since the tests on the unidirectional paths are

not bound to the common sample of 29 species. Thereby, none of the available information is lost and

the pattern of the phylogenetic path analysis can be tested for its robustness using bigger sample sizes.

The PGLS regressions were run in the package caper (Orme 2013), jointly estimating the phylogenetic

signal lambda of the residuals. Based on the directions of the best-fit evolutionary path model, we

tested the effect of the PCs on brain size in case of opportunities, whereas in case of consequences, we

tested the effect of brain size on the PCs. Due to the strong covariance with body mass, especially

with ecological variables, all PGLS regressions include body mass as a covariate in order to test the

associations with relative brain size. In addition, both brain size and body mass were natural-log

transformed in order to achieve evenly distributed residuals as required by the model assumptions.

For the jackknife resampling analyses we calculated the mean and 95% percentile confidence inter-

vals of the PGLS estimates. 1,000 data sets were jackknifed over tips based on sampling without

replacement using a subsample size of 80% of the original sample size. To control for phylogenetic

non-independence we used the primate phylogeny published by Perelman et al. (2011) (Fig. S1). All

analyses and graphs were performed in the R programming language (R Core Team 2015).
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Results

Phylogenetic Principal Component Analysis

The pPCAs encompassing social and ecological opportunity variables both resulted in two main princi-

pal axes explaining the largest part of the variation. In the social domain, both axes include a mixture

of social structure as well as mating system characteristics (Table 5.1A, S3). PC1, explaining 22% of

the variation, reflects the gradient in group size and cohesion, and the associated sexual dimorphism

and (lack of) territoriality. PC2 (20%) describes the social and mating system, ranging from single

male monopoly to multi-male scramble competition. The ecological traits cluster into a first principal

component (26%), which reflects variation in diet composition and thus nutrient density. The second

PC (18%) represents a habitat gradient, from open, seasonal terrestrial habitats with high degrees of

seasonality to stable forest habitats with arboreal niches (Table 5.1B, S16). Together, they represent

the gradient of ecological niche complexity.

Table 5.1: Opportunities. pPCA of A) Social opportunities and B) ecological opportunities. Given are the pPCA factor loadings for
the two main principal components (cumulative prop. ≥ 40%) with corresponding Eigenvalues and the cumulative explained proportion.
Factor loadings ≥ 0.5 are indicated in bold font. Detailed values for following PCs are given in Table S3 and S5, respectively.

A Social opportunities PC1 PC2 B Ecological opportunities PC1 PC2

Eigenvalues 2.371 2.236 Eigenvalues 2.899 1.901
Cumulative Proportion 0.216 0.419 Cumulative Proportion 0.264 0.436

Multi-male-female group 0.049 0.662 Diurnality -0.384 -0.342
Group size 0.509 0.420 Wooded habitat 0.015 -0.652

Gregariousness -0.255 0.646 Arboreality 0.026 -0.498
Fission-fusion 0.568 -0.123 Predation risk 0.393 0.302

HR overlap 0.315 0.093 Mobility in ranging area 0.327 0.457
Vocal terr. advertisement -0.604 -0.458 Environmental seasonality 0.246 0.503

Dispersal -0.083 -0.423 Faunivory 0.515 -0.470
Polygynandry 0.254 0.600 Frugivory 0.697 0.046

Body size dimorphism 0.770 -0.246 Folivory -0.923 0.065
Visual trait dimorphism 0.656 -0.586 Extractive foraging 0.146 0.469

Cooperative breeding -0.405 -0.168 Diet quality 0.896 -0.334
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Regarding the consequences, the pPCAs reduced both the socio-cognitive and eco-cognitive con-

sequence variables to a single principal component explaining the greatest proportion of the variance

(57% and 42%, respectively). In the social domain, all the factor loadings show high values (> 0.5),

implying a high degree of interrelatedness among the socio-cognitive consequences (Table 5.2A, S32).

In the ecological domain, all traits similarly show high loadings on this first principal component (Table

5.2B), except for the degree of buffering of environmental seasonality, which loads, also together with

diet breadth, highly on the second PC (Table S39). This separation suggests that buffering habitat

seasonality does not necessarily involve tool use or hunting, but rather reflects a general diet breadth

expansion, which represents a separate eco-cognitive domain.

Table 5.2: Consequences. pPCA of A) Social consequences and B) Ecological consequences. Given are the pPCA factor loadings for the
main principal component (cumulative prop. ≥ 40%) with corresponding Eigenvalues and the cumulative explained proportion. Factor
loadings ≥ 0.5 are indicated in bold font. Detailed values for following PCs are given in Table S10 and S13, respectively.

A Socio-cognitive consequences PC1 B Eco-cognitive consequences PC1

Eigenvalues 2.281 Eigenvalues 2.111
Cumulative Proportion 0.570 Cumulative Proportion 0.422

Buffering env. seasonality 0.113
Social learning frequency 0.784 Diet breadth 0.465

Coalition formation 0.731 Hunting 0.769
Social hunting 0.856 Tool use 0.815

Food sharing among adults 0.633 Innovation frequency 0.791

Multidirectional Analysis: Phylogenetic Path Analysis

Including the total of six PCs (2 each for the social and ecological opportunities and 1 each for the

socio-cognitive and eco-cognitive consequences) into a phylogenetic path analysis reveals that two

models show a substantial increase in the goodness of fit (delta CICc < 3) compared to the 26 other

candidate models (Table S2, Fig. S6). These are the models that include the evolutionary paths

from the opportunities to brain size and from brain size to consequences, as well as the two-way in-

terrelationship between eco-cognitive and socio-cognitive consequences. The averaged standardized

regression coefficients of the two best fit models show that only ecological, i.e. energetic, opportunities

significantly affect the evolution of relative brain size, whereas the social opportunities show much

weaker effects (Fig. 5.1, left). The path model also reveals that brain size has especially strong effects

on the eco-cognitive consequences, and these, as predicted by the notion of domain-general cognitive

ability, are strongly related to the socio-cognitive consequences via a positive feedback loop (Fig. 5.1,

right).

These results suggest that an enlarged brain leads to complex eco- as well as socio-cognitive conse-

quences. The weak effect from brain to the social consequences can be explained by the use of the

partial regression within the path analysis to test for the effect of brain size on social consequences,

while additionally controlling for ecological consequences. In fact, the weak effect most likely repre-

sents a statistical artifact, since the phylogenetic path analysis exclusively allows acyclic paths, which

prevents the accurate detection of the triangular evolutionary association between relative brain size

and both socio-cognitive and eco-cognitive consequences.
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Figure 5.1: Multidirectional Analysis: Phylogenetic Path Analysis. The paths represent the average of the two models with the
best goodness of fit where ∆CICc ≤ 3 (Models A2 and A3, Table S2, Fig. S6). Given are the average (weighted by the relative
evidence) standardized regression coefficients and the corresponding confidence intervals in square brackets. Bold values indicate statistical
significance, meaning the confidence interval does not include zero.

Unidirectional Analysis: Phylogenetic Least-Squares Regressions

The unidirectional PGLS regression models, which allow for bigger sample sizes, strongly support the

patterns found in the phylogenetic path analysis. First, testing for the effects of the opportunity PCs

on relative brain size showed that only the ecological principal components explain variation in relative

brain size (PGLS: N = 43, λ = 1.00, βPC1social = 0.004 (p = 0.442); βPC2social = −0.001 (p = 0.699);

βPC1ecology = 0.007 (p = 0.024); βPC2ecology = 0.005 (p = 0.090); Fig. 5.2A-D). This result also

received high support from jackknife resampling analysis (Fig. 5.2E, F; Table S29). Further, a model

selection approach using the common sample for social and ecological opportunities showed that the

best-fitting model includes the two ecological PCs but none of the social PCs (Table S30).
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Figure 5.2: Unidirectional Analysis: PGLS on Opportunities. Bivariate relationships between relative brain size (residuals of log brain
vs. log body) and the principal components of the social (A, B) and ecological (C, D) opportunities (N=43; presented are raw, non-
phylogenetically corrected data; slopes of regression lines and p-values are based on the PGLS regression model). Density distributions
are the result of 1,000 non-parametric jackknife resampling replicates of PGLS regression estimates (E, F; Table S29).

Second, regarding the consequences, the subsequent PGLS regressions also provided strong statis-

tical support for a relationship between relative brain size and both the socio-cognitive PC1 (PGLS:

N = 60, λ = 0.00, βBrain = 16.990 (p = 0.004); Fig. 5.3A) and eco-cognitive PC1 (PGLS: N = 53,

λ = 0.81, βBrain = 18.453 (p = 0.002); Fig. 5.3B) (also with eco-cognitive PC2, which loads
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highly on the degree of buffering environmental seasonality, Table S40). Moreover, the results also

show a very strong association among the socio-cognitive and eco-cognitive consequences (PGLS: re-

sponse=PC1SocialConsequences, λ = 0.00, N = 32, βPC1EcologicalConsequences = 1.235 (p < 0.001),

Fig. 5.3C; response=PC1ecological consequences, λ = 0.00, N = 32, βPC1SocialConsequences = 0.663

(p < 0.001)), even when we in additional control for relative brain size (Table S48, S49) or exclud-

ing strong outliers (Table S38, S47, S50-S53). In contrast, there were also no statistically significant

relationships among the social and ecological opportunity PCs (Table S31).

Figure 5.3: Unidirectional Analysis: PGLS on Consequences. Bivariate relationships between the first principal components of both
the socio-cognitive (A) (Nspp. = 60) and eco-cognitive (B) (Nspp. = 53) consequences and relative brain size (residuals of log brain vs.
log body) as well as the relationship between these two principal components (C) (Nspp. = 32) (presented are raw, non-phylogenetically
corrected data; slopes of regression lines and p-values are based on PGLS). Color codes are identical to those in Fig. 5.2.
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Discussion

The results were fully consistent with the presence of opportunities as potential selective agents, intro-

duced in this study. They showed that ecological opportunities were far better predictors of relative

brain size in a large sample of primates than social predictors, consistent with the predictions of the

expensive brain approach. Finally, they also supported the notion of general cognitive flexibility, in

that brain size in turn strongly predicted the immediate cognitive consequences, be they in the eco-

logical or the social domain. We will discuss these main results in turn.

We used a variety of tests to validate the distinction between opportunities for selection and con-

sequences. First, the phylogenetic path analysis revealed that the models including the paths from

opportunities to brain size and from brain size to consequences as well as its interrelationships show

a substantial increase in goodness of fit compared to all the other models, which strongly supports

the notion of cause and effects implied by the concept of opportunities and consequences. Second,

unlike for consequences, the principal axes of ecological and social opportunities were not correlated,

underlining their independence. Third, they showed more modest relationships with relative brain size

than the consequences, reflecting the possibility that some lineages could not (fully) respond to the

opportunities they experienced. Finally, when we exchanged some variables whose assignment could

be questioned, our results proved to be robust (Supplementary Information).

Given the high statistical robustness (Supplementary Results and Discussion), our results strongly

suggest that selection on brain size in primates primarily reflects energetic opportunities. Since the

principal components of ecological opportunities show a clear effect on relative brain size, this result

suggests that highly nutritive foods linked to seasonally fluctuating environments provide species with

potential access to an increased energy intake during times of scarcity, which directly supports an in-

crease in brain size (Melin et al. 2014). The lack of statistical support for social opportunities suggests

that the energetic costs of maintaining larger brains play a decisive part in enabling brain enlarge-

ment, and thus that ecological preconditions constrain brain size evolution. This pattern is consistent

with previous empirical support for the role of energy in primate brain size evolution. Comparative

studies have shown that the evolution of large brains is only possible in species where there is some

combination of the following: the net energetic input is systematically increased (BMR: Dunbar and

Shultz 2007, Isler et al. 2008; diet quality: DeCasien et al. 2017), the energetic turnover is stabilized

over the year through the avoidance of starvation periods (van Woerden et al. 2010, 2012, 2014), or

females receive subsidies during reproduction (Isler and van Schaik 2012).

Frugivory, if excluded from the pPCA, is the only variable to strongly reduce the effect of ecological

opportunities on relative brain size (Table S28). This emphasizes the importance of net energetic in-

put in brain size evolution and is highly consistent with the recent findings by DeCasien et al. (2017)

showing that diet better predicts relative brain size in primates than sociality. However, since we also

found support (even though statistically weaker) for PC2 of the ecological opportunities representing

habitat cover and environmental seasonality, we would suggest that the degree of frugivory is probably

not the exclusive driver. Furthermore, frugivory by itself does not explain why non-primate frugivo-

rous species did not evolve larger brains.

Although the strong ecological perspective of brain size evolution suggests that correlations with so-

cial opportunities found in previous studies may be spurious (see also van der Bijl and Kolm 2016),

a subset of the social demands posited by the social brain hypothesis may nonetheless have favored

evolutionary increases in brain size, because they involve social processes that improve energy intake,

such as the social learning of skills or coordination in foraging contexts.

The highly significant associations between relative brain size and both socio-cognitive and eco-
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cognitive consequences, as well as the high interrelatedness among them, suggest a tight coevolution of

abilities in different cognitive domains. These findings strongly support the notion of general behav-

ioral flexibility or general intelligence, which has been postulated for mammals and birds, and is linked

to relative brain size (Borrego and Gaines 2016, Burkart et al. 2016, Deaner et al. 2007, Lefebvre et

al. 2004, Navarrete et al. 2016, Reader et al. 2011, Reader and Laland 2002). Furthermore, they sup-

port the inclusive concept of cultural intelligence, which states that the social acquisition of complex

(ecological) skills is tightly linked to the evolution of intelligence (Whiten and van Schaik 2007, van

Schaik and Burkart 2011, van Schaik et al. 2012). A larger and more complex skill repertoire, as a

cognitive consequence, promote the frequencies of social learning, and vice versa, higher frequencies of

social learning promote an individual‘s repertoire of ecological skills. This hypothesis therefore links

ecological and social opportunities.

The absence of a clear correlation between the social and ecological opportunities strongly suggests

that these two classes of opportunities arose independently. The finding that over the course of evolu-

tion ecological opportunities independently enabled the evolution of brain size explains the presence

of so-called grade shifts within primates (van Schaik et al. 2012) and among taxa in different lineages

(Holekamp 2007, Holekamp et al. 2015), where we find divergent relative brain sizes despite similar

social opportunities.

In conclusion, these results suggest that complex cognitive abilities such as flexible tool use, under-

standing of third-party relationships or observational social learning could only evolve in lineages

where the evolution of a large brain had been enabled by favourable ecological preconditions.

Even though our approach proposes a distinction between potential selective causes and consequences

of enlarged brains, this does not exclude the fact that adaptations are often the result of evolutionary

feedback loops. In other words, once a consequence has emerged, it may itself become a driver of

further brain enlargement. For instance, if ecological opportunities favor simple forms of extractive

foraging, selection may subsequently enhance extractive abilities by favoring manual dexterity (Held-

stab et al. 2016) and tool use. Likewise, socio-cognitive abilities such as increased levels of food

sharing, social learning and cooperation together may favor the exploitation of higher-quality food re-

sources (protected plant foods, cooperative hunting for large prey) and reduced rates of mortality due

to starvation and predation. This entails reduced severity of the life-history filter (cf. van Schaik et al.

2012) and thus reduced costs and thereby further releases the coevolutionary process between ecolog-

ical opportunities and brain size. Nonetheless, these considerations do not refute the basic distinction

because the correlation structure linking opportunities, brains and consequences should remain as

envisaged here. First, not all opportunities are realized (as social opportunities did not seem to affect

brain size). And second, all consequences, even if further enhanced by subsequent selection, remain

consequences: enhanced extractive abilities still are an immediate reflection of brain size (Heldstab et

al. 2016).

This new perspective is fully consistent with current ideas about the evolution of brain size within the

hominin lineage. A substantial increase in relative brain size in Homo ergaster (ca 1.7 Mya) coincided

with a dietary shift towards the inclusion of more nutrient dense foods (meat) in open and seasonal

habitats, which was accompanied by a pronounced increase in technological (e.g. tool use) and social-

ecological (e.g. extensive food sharing) complexity (Foley and Gamble 2009).

In sum, our results show that the unusually large brains of nonhuman primates did not evolve in

response to the demands imposed by increasingly complex social life, but instead made ever more

complex social life possible.
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Figure S1. Phylogenetic tree of the 92 primate species showing the availability of information on the variables in the four domains
including social/ecological opportunity and consequence variables.
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Table S1. Measurements, numerical coding of variables and corresponding references

Variables Measurements/Levels References

Social Opportunities
Social system solitary = 0, sm-sF = 1, sM-mF/mM-sF = 2, mM-mF = 3 41 - 43
Home range overlap % of the total range 41, 42, 44
Vocal territorial advertisement no=0, yes=1 41, 42
Group size count 32, 41 - 43, 45
Gregariousness solitary=1, pairs=2, groups=3 20, 39
Fission-fusion no=0, yes=1 41 - 43, 46
Dispersal f/m=0, both f and m=1 39, 45
Mating system monogamous=1, polygyn/polyandr.=2, polgynandrous=3 38, 39, 47, 48
Body size dimorphism male / female body mass 43, 49 - 51
Visual trait dimorphism sum of sex. dim. in every discernible ornament 43
Cooperative breeding no=0, yes=1 20, 41
Ecological opportunities
Activity period nocturnal=0, diurnal=1 41, 42, 52, 53
Habitat open=0, wooded=1 41 - 43, 53
Substrate terrestrial=0, arboreal=1 20, 41, 42, 53, 54
Predation risk low=1, medium=2, high=3 53
Mobility in ranging area D-index=average daily path length / diameter ranging area 41, 42, 55, 56
Environmental seasonality coefficient of variation (CV) in plant productivity 57
Faunivory annual mean proportion of insects and meat in diet 58 - 111
Frugivory annual mean proportion of fruits and seeds in diet 58 - 111
Folivory annual mean proportion of leaves in diet 58 - 111
Extractive foraging no=0, yes=1 16, 19, 112
Diet quality sum of annual mean proportion of each diet category

times its quality value
quality value from 113

Socio-cognitive consequences
Social learning frequency orth. residuals log-log with zool. record article count 16
Coalition formation no=0, mm/ff=1, mm and ff=2 112, 114, 115
Social hunting no=0, yes=1 19, 46, 52, 116, 117
Food sharing among adults no=0, yes=1 112
Eco-cognitive consequences
Buffering env. seasonality CV in plant productivity - CV in diet composition 57
Diet breadth number of diet categories >=10% 52
Hunting no=0, yes=1 19, 46, 52, 116
Tool use no=0, only captive=1, wild=2 118
Innovation frequency orth. residuals log-log with zool. record article count 16

PhD thesis, Sereina M. Graber, 2017 131



Social and Ecological Aspects of Brain Size Evolution
Chapter 5. Ecology is the Main Driver of Primate Brain Size Evolution

Supplementary Tables and Figures: Phylogenetic Path Analysis

Figure S2. Phylogenetic Path Analysis. Candidate models A: Opportunities � brain size � consequences.

Figure S3. Phylogenetic Path Analysis. Candidate models B: Opportunities � brain size � consequences.
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Figure S4. Phylogenetic Path Analysis. Candidate models C: Opportunities � brain size � consequences.

Figure S5. Phylogenetic Path Analysis. Candidate models D: Opportunities � brain size � consequences.
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Table S2. Phylogenetic path analysis. N = 29. Given are the number of conditional independencies (= number of d-separation statements)
(k), C statistic (C), p-value (p), corrected C statistic information criterion (CICc) and the difference in the CICc (delta CICc) for each of
the 28 candidate path models. Models A2 and A3 show the best goodness of fit (delta CICc < 3).

model k C p CICc delta CICc
A2 14 24.08 0.68 82.08 0.00
A3 14 26.65 0.54 84.65 2.56
D2 14 29.01 0.41 87.01 4.93
B2 14 29.59 0.38 87.59 5.51
B3 14 31.57 0.29 89.57 7.49
D3 14 31.57 0.29 89.57 7.49
C2 14 34.12 0.20 92.12 10.04
C3 14 42.83 0.04 100.83 18.74
A7 10 17.54 0.62 121.94 39.86
A6 10 17.72 0.61 122.12 40.03
B7 10 21.03 0.40 125.43 43.35
D7 10 21.03 0.40 125.43 43.35
A1 15 75.75 0.00 126.02 43.94
D6 10 21.84 0.35 126.24 44.16
B6 10 22.42 0.32 126.82 44.74
D1 15 80.68 0.00 130.95 48.86
B1 15 80.85 0.00 131.12 49.03
C6 10 29.03 0.09 133.43 51.34
C7 10 34.82 0.02 139.22 57.14
C1 15 89.47 0.00 139.74 57.65
A4 11 67.92 0.00 157.56 75.47
A5 11 69.05 0.00 158.69 76.60
D4 11 71.94 0.00 161.58 79.50
B4 11 72.11 0.00 161.75 79.66
D5 11 72.54 0.00 162.18 80.09
B5 11 72.71 0.00 162.34 80.26
C5 11 79.13 0.00 168.77 86.68
C4 11 80.66 0.00 170.30 88.21

Figure S6. Phylogenetic Path Analysis: Best fit models A2 (top) and A3 (bottom). Given are the standardized regression coefficients
and the corresponding confidence intervals (CI). Significant coefficients (0 /∈ CI) are indicated in bold.
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Supplementary Tables and Analyses of Robustness: Phylogenetic Least-Squares
Regressions

We tested the robustness of our conclusions in several different ways.

First, we systematically excluded each of the variables from the pPCAs (new loadings given in Tables

S4 - S14, S17 - S27, S33 - S36, S41 - S45), and reran the subsequent PGLS regressions with the

corresponding PCs to exclude the possibility that the relationships might actually be driven by a

single variable. For the social opportunities, excluding single variables from the pPCA resulted in

the majority of the cases in non-significant effects of the resulting two PCs on relative brain size

(Table S15). For the ecological opportunity variables, the effects of the PCs on relative brain size

remained basically similar (and significant for PC1), independent of which variable was excluded

from the pPCA (Table S28). These findings imply that the statistical trend of PC1 of the social

opportunities in the original analysis is not robust and thus reinforces ecology as the main driver of

primate brain size evolution. The analogous analyses regarding consequence variables did not change

our main findings (Tables S37, S46). Only the exclusion of hunting from the pPCA encompassing the

ecological consequences yielded a non-significant result of PC1 with relative brain size, but that was

because the factor loadings of the pPCA redistributed and loaded also highly on the second PC (Table

S43), which therefore showed a highly significant association with relative brain size (Table S46).

Additionally, we can exclude that the few large-brained hunting species are driving the association

between relative brain size and ecological consequences, since excluding Cebus appella, Cebus capucinus

and Pan troglodytes still yield a highly significant result (Table S47).

Second, we reclassified variables for which the assignment to opportunities could be questioned (fission-

fusion and extractive foraging). Living in a fission-fusion society might not necessarily require a large

brain, and is therefore classified as an opportunity variable. However, it has also been argued to

require enhanced cognition in terms of long-term memory and recognition, in which case it should be

classified as a consequence. Extractive foraging, on the one hand can be classified as an opportunity,

since it simply represents a foraging technique used for specific types of foods (e.g. roots, tubers,

specific insects), in special cases with morphological adaptations (e.g. Daubentonia madagascariensis),

which does not necessarily require enhanced cognition. On the other hand, extracting foods from

embedding matrices, closely linked to tool use, can be argued to be intrinsically cognitively demanding,

in which case it must be classified as a consequence variable. This reclassification from opportunities

to consequences made our results even stronger (see below).

Finally, we excluded striking outliers (Cebus capucinus, Cebus apella, Pan troglodytes) (S38, S47, S50

- S53), conducted a jackknife resampling technique without replacement (shown only for the combined

model of opportunities, Table S29) and used common limited samples (where data were available on

both social and ecological opportunity variables as well as the consequence variables, not shown), but

also none of this changed our results.
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Social Opportunities

Table S3. Phylogenetic PCA of social opportunity variables. N=67; lambda=0.95. Given are the factor loadings as well as the Eigenvalues
and the cumulative proportion of the corresponding factors.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11
Eigenvalues 2.3709 2.2358 1.3607 1.1637 0.8673 0.7445 0.7012 0.5851 0.5366 0.2335 0.2008

Cumulative Proportion 0.2155 0.4188 0.5425 0.6483 0.7271 0.7948 0.8585 0.9117 0.9605 0.9817 1.0000
Home range overlap 0.3147 0.0928 -0.4359 0.6620 -0.1648 -0.0653 -0.3717 0.1963 0.2122 0.0137 -0.1036

Vocal territorial advertisement -0.6039 -0.4583 0.1831 -0.0401 -0.1851 0.1844 -0.4118 -0.0494 -0.3312 0.1167 -0.1630
Group size 0.5091 0.4197 0.4096 -0.1523 -0.2198 0.1424 -0.2075 0.4457 -0.2039 -0.0454 0.1407

Gregariousness -0.2551 0.6456 0.4197 0.2832 0.3027 -0.0904 0.2311 0.1872 -0.0997 -0.0134 -0.2518
Fission fusion 0.5680 -0.1229 0.4491 -0.4173 0.0675 -0.3062 -0.2355 -0.0653 0.3012 0.1449 -0.1289

Body size dimorphism 0.7696 -0.2462 -0.0445 0.2968 -0.0067 -0.0209 0.2764 -0.0663 -0.3041 0.2882 0.0117
Visual trait dimorphism 0.6557 -0.5859 0.2002 0.1324 -0.0353 -0.0005 0.0286 -0.1462 -0.1473 -0.3316 -0.1188

Cooperative breeding -0.4050 -0.1683 0.3663 0.2350 -0.6222 -0.4228 0.2141 0.0160 0.0601 -0.0026 0.0511
Dispersal -0.0832 -0.4229 0.5577 0.3698 0.0943 0.4922 0.0746 0.0151 0.3185 0.0547 0.0710

Social system - multi M/F 0.0493 0.6619 0.3058 0.3287 0.0800 -0.0812 -0.2916 -0.4823 -0.0967 -0.0169 0.1327
Mating system - Polygynandry 0.2541 0.6000 -0.1031 -0.2016 -0.5076 0.3948 0.1669 -0.2175 0.1053 0.0138 -0.1555

Table S4. Phylogenetic PCA of social opportunity variables excluding Home range overlap. Given are the factor loadings as well as the
Eigenvalues and the cumulative proportion of the corresponding PC1 and PC2.

PC1 PC2
Eigenvalues 2.32 2.19

Cumulative Proportion 0.23 0.45
Vocal territorial advertisement 0.34 -0.65

Group size -0.34 0.60
Gregariousness 0.45 0.49
Fission fusion -0.64 0.14

Body size dimorphism -0.78 0.07
Visual trait dimorphism -0.85 -0.27

Cooperative breeding 0.29 -0.32
Dispersal -0.15 -0.40

Social system - multi M/F 0.21 0.61
Mating system - Polygynandry 0.03 0.66

Table S5. Phylogenetic PCA of social opportunity variables excluding Vocal territorial advertisement. Given are the factor loadings as
well as the Eigenvalues and the cumulative proportion of the corresponding PC1 and PC2.

PC1 PC2
Eigenvalues 2.30 1.86

Cumulative Proportion 0.23 0.42
Home range overlap -0.13 0.22

Group size -0.12 0.78
Gregariousness 0.60 0.31
Fission fusion -0.53 0.35

Body size dimorphism -0.72 0.31
Visual trait dimorphism -0.89 0.07

Cooperative breeding 0.16 -0.34
Dispersal -0.27 -0.25

Social system - multi M/F 0.40 0.60
Mating system - Polygynandry 0.25 0.61
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Table S6. Phylogenetic PCA of social opportunity variables excluding Group size. Given are the factor loadings as well as the Eigenvalues
and the cumulative proportion of the corresponding PC1 and PC2.

PC1 PC2
Eigenvalues 2.31 1.99

Cumulative Proportion 0.23 0.43
Home range overlap -0.17 0.38

Vocal territorial advertisement 0.16 -0.80
Gregariousness 0.60 0.24
Fission fusion -0.52 0.13

Body size dimorphism -0.75 0.34
Visual trait dimorphism -0.88 -0.05

Cooperative breeding 0.20 -0.46
Dispersal -0.23 -0.45

Social system - multi M/F 0.38 0.49
Mating system - Polygynandry 0.22 0.59

Table S7. Phylogenetic PCA of social opportunity variables excluding Gregariousness. Given are the factor loadings as well as the
Eigenvalues and the cumulative proportion of the corresponding PC1 and PC2.

PC1 PC2
Eigenvalues 2.40 1.92

Cumulative Proportion 0.24 0.43
Home range overlap 0.34 0.00

Vocal territorial advertisement -0.73 0.21
Group size 0.61 -0.18

Fission fusion 0.50 0.29
Body size dimorphism 0.65 0.52

Visual trait dimorphism 0.43 0.80
Cooperative breeding -0.44 0.11

Dispersal -0.25 0.53
Social system - multi M/F 0.26 -0.50

Mating system - Polygynandry 0.45 -0.56

Table S8. Phylogenetic PCA of social opportunity variables excluding Fission fusion. Given are the factor loadings as well as the
Eigenvalues and the cumulative proportion of the corresponding PC1 and PC2.

PC1 PC2
Eigenvalues 2.25 2.15

Cumulative Proportion 0.23 0.44
Home range overlap 0.27 0.36

Vocal territorial advertisement -0.70 -0.32
Group size 0.59 0.16

Gregariousness 0.44 -0.56
Body size dimorphism 0.17 0.84

Visual trait dimorphism -0.21 0.82
Cooperative breeding -0.35 -0.31

Dispersal -0.42 0.09
Social system - multi M/F 0.60 -0.30

Mating system - Polygynandry 0.65 -0.04
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Table S9. Phylogenetic PCA of social opportunity variables excluding Body size dimorphism. Given are the factor loadings as well as the
Eigenvalues and the cumulative proportion of the corresponding PC1 and PC2.

PC1 PC2
Eigenvalues 2.22 1.86

Cumulative Proportion 0.22 0.41
Home range overlap -0.21 -0.11

Vocal territorial advertisement 0.64 0.35
Group size -0.55 -0.43

Gregariousness -0.51 0.47
Fission fusion -0.06 -0.75

Visual trait dimorphism 0.33 -0.77
Cooperative breeding 0.30 0.35

Dispersal 0.43 -0.10
Social system - multi M/F -0.63 0.19

Mating system - Polygynandry -0.66 -0.04

Table S10. Phylogenetic PCA of social opportunity variables excluding Visual trait dimorphism. Given are the factor loadings as well as
the Eigenvalues and the cumulative proportion of the corresponding PC1 and PC2.

PC1 PC2
Eigenvalues 2.28 1.69

Cumulative Proportion 0.23 0.40
Home range overlap 0.30 -0.21

Vocal territorial advertisement -0.76 0.13
Group size 0.65 0.07

Gregariousness 0.24 0.78
Fission fusion 0.33 -0.37

Body size dimorphism 0.40 -0.61
Cooperative breeding -0.42 0.31

Dispersal -0.35 -0.03
Social system - multi M/F 0.47 0.61

Mating system - Polygynandry 0.59 0.22

Table S11. Phylogenetic PCA of social opportunity variables excluding Cooperative breeding. Given are the factor loadings as well as the
Eigenvalues and the cumulative proportion of the corresponding PC1 and PC2.

PC1 PC2
Eigenvalues 2.41 2.29

Cumulative Proportion 0.24 0.47
Home range overlap -0.36 -0.17

Vocal territorial advertisement 0.76 -0.09
Group size -0.67 0.22

Gregariousness -0.08 0.76
Fission fusion -0.49 -0.27

Body size dimorphism -0.58 -0.58
Visual trait dimorphism -0.32 -0.81

Dispersal 0.36 -0.23
Social system - multi M/F -0.38 0.61

Mating system - Polygynandry -0.56 0.35
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Table S12. Phylogenetic PCA of social opportunity variables excluding Dispersal. Given are the factor loadings as well as the Eigenvalues
and the cumulative proportion of the corresponding PC1 and PC2.

PC1 PC2
Eigenvalues 2.35 2.11

Cumulative Proportion 0.24 0.45
Home range overlap -0.27 0.14

Vocal territorial advertisement 0.51 -0.52
Group size -0.46 0.51

Gregariousness 0.33 0.67
Fission fusion -0.60 -0.03

Body size dimorphism -0.80 -0.12
Visual trait dimorphism -0.74 -0.43

Cooperative breeding 0.37 -0.18
Social system - multi M/F 0.05 0.71

Mating system - Polygynandry -0.14 0.62

Table S13. Phylogenetic PCA of social opportunity variables excluding Social system - multi M/F. Given are the factor loadings as well
as the Eigenvalues and the cumulative proportion of the corresponding PC1 and PC2.

PC1 PC2
Eigenvalues 2.35 1.95

Cumulative Proportion 0.24 0.43
Home range overlap -0.28 0.15

Vocal territorial advertisement 0.53 -0.58
Group size -0.47 0.41

Gregariousness 0.31 0.46
Fission fusion -0.60 -0.14

Body size dimorphism -0.79 -0.16
Visual trait dimorphism -0.73 -0.55

Cooperative breeding 0.37 -0.30
Dispersal -0.01 -0.57

Mating system - Polygynandry -0.16 0.67

Table S14. Phylogenetic PCA of social opportunity variables excluding Mating system - Polygynandry. Given are the factor loadings as
well as the Eigenvalues and the cumulative proportion of the corresponding PC1 and PC2.

PC1 PC2
Eigenvalues 2.35 1.94

Cumulative Proportion 0.24 0.43
Home range overlap -0.24 0.23

Vocal territorial advertisement 0.42 -0.62
Group size -0.37 0.52

Gregariousness 0.41 0.63
Fission fusion -0.60 0.07

Body size dimorphism -0.81 0.02
Visual trait dimorphism -0.81 -0.33

Cooperative breeding 0.32 -0.30
Dispersal -0.09 -0.39

Social system - multi M/F 0.14 0.69
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Table S15. Estimates and p-values of the effects of PCs of social opportunities on relative brain size (mulitple PGLS regression). In the
first row the result of the original analysis is given, in the subsequent rows, the results are based on PCs from pPCAs where systematically
each of the variable is left out. All analyses are based on the maximum sample size used for the original analysis N=67. ∗Numerical optimization
problem using PGLS in the package caper, alternatively applied bayesian phylogenetic mixed model in the package MCMCglmm, yielding equivalent results.

PC1 PC2
estimate p-value estimate p-value

all variables - original analysis 0.0056 0.0506 0.0030 0.3025
excluding Home range overlap 0.0039 0.1326 0.0056 0.0919
excluding Vocal territorial advertisement * 0.0017 0.5393 0.0036 0.3474
excluding Group size 0.0039 0.1334 0.0100 0.0042
excluding Gregariousness 0.0066 0.0306 0.0020 0.4214
excluding Fission fusion 0.0050 0.1144 0.0041 0.1567
excluding Body size dimorphism 0.0048 0.1435 0.0039 0.1811
excluding Visual trait dimorphism 0.0076 0.0181 -0.0074 0.0278
excluding Cooperative breeding * 0.0045 0.1444 -0.0005 0.8548
excluding Dispersal 0.0041 0.1305 0.0018 0.5761
excluding Social system - multi M/F 0.0064 0.0276 0.0063 0.0424
excluding Mating system - Polygynandry 0.0040 0.1266 0.0052 0.1451
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Ecological opportunities

Table S16. Phylogenetic PCA of ecological opportunity variables. N=50; lambda=0.66. Given are the factor loadings as well as the
Eigenvalues and the cumulative proportion of the corresponding factors.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11
Eigenvalues 2.8990 1.9007 1.6252 1.3576 1.1027 0.6716 0.5531 0.4233 0.3088 0.1018 0.0561

Cumulative Proportion 0.2635 0.4363 0.5841 0.7075 0.8078 0.8688 0.9191 0.9576 0.9856 0.9949 1.0000
Predation risk 0.3930 0.3017 -0.2521 -0.0913 0.7377 0.0261 0.0334 -0.3135 0.1959 -0.0021 -0.0057

Mobility in ranging area 0.3274 0.4570 -0.3084 -0.5449 -0.1412 -0.3824 0.1583 0.2690 0.1532 -0.0684 0.0102
Environmental seasonality 0.2464 0.5027 0.6376 -0.0159 0.2464 -0.2322 0.2391 -0.0282 -0.3256 0.0334 -0.0072

Faunivory 0.5154 -0.4699 -0.4966 0.3352 0.2012 0.0042 0.2184 0.0964 -0.1865 -0.1096 0.1011
Frugivory 0.6970 0.0458 0.5676 -0.0288 -0.2742 0.0697 -0.1796 -0.1765 0.0697 -0.1999 0.0309

Folivory -0.9231 0.0646 -0.1793 -0.1205 0.1324 0.0441 0.0942 -0.0589 -0.1184 -0.2024 -0.1013
Extractive foraging 0.1457 0.4687 -0.6264 0.1405 -0.3082 -0.2256 -0.3142 -0.2456 -0.2042 0.0180 -0.0014

Diet quality 0.8963 -0.3339 -0.0975 0.1741 -0.0079 -0.0377 -0.0035 0.0952 -0.0205 0.0116 -0.1850
Substrate - arboreality 0.0256 -0.4981 0.0816 -0.6019 0.3834 -0.1174 -0.4319 0.1077 -0.1523 -0.0011 0.0164

Activity - diurnality -0.3843 -0.3422 0.2211 0.5187 0.1251 -0.6095 -0.0809 -0.0366 0.1466 -0.0269 0.0022
Habitat - wooded 0.0152 -0.6517 -0.0400 -0.4929 -0.2950 -0.1621 0.2985 -0.3545 -0.0223 0.0437 -0.0017

Table S17. Phylogenetic PCA of ecological opportunity variables excluding Predation risk. Given are the factor loadings as well as the
Eigenvalues and the cumulative proportion of the corresponding PC1 and PC2.

PC1 PC2
Eigenvalues 3.08 1.79

Cumulative Proportion 0.31 0.49
Mobility in ranging area -0.35 0.12

Environmental seasonality -0.31 -0.67
Faunivory -0.63 0.50
Frugivory -0.68 -0.31

Folivory 0.95 -0.03
Extractive foraging -0.42 -0.09

Diet quality -0.92 0.30
Substrate - arboreality 0.20 0.64

Activity - diurnality 0.12 -0.01
Habitat - wooded 0.11 0.68

Table S18. Phylogenetic PCA of ecological opportunity variables excluding Mobility in ranging area. Given are the factor loadings as well
as the Eigenvalues and the cumulative proportion of the corresponding PC1 and PC2.

PC1 PC2
Eigenvalues 2.78 1.84

Cumulative Proportion 0.28 0.46
Predation risk -0.28 -0.33

Environmental seasonality -0.20 -0.68
Faunivory -0.53 0.46
Frugivory -0.73 -0.26

Folivory 0.93 0.10
Extractive foraging 0.01 -0.27

Diet quality -0.93 0.23
Substrate - arboreality -0.09 0.51

Activity - diurnality 0.30 0.22
Habitat - wooded -0.10 0.73
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Table S19. Phylogenetic PCA of ecological opportunity variables excluding Environmental seasonality. Given are the factor loadings as
well as the Eigenvalues and the cumulative proportion of the corresponding PC1 and PC2.

PC1 PC2
Eigenvalues 2.78 1.88

Cumulative Proportion 0.28 0.47
Predation risk 0.28 0.43

Mobility in ranging area 0.24 0.61
Faunivory 0.56 -0.18
Frugivory 0.69 -0.12

Folivory -0.92 0.03
Extractive foraging 0.06 0.72

Diet quality 0.93 -0.17
Substrate - arboreality 0.10 -0.45

Activity - diurnality -0.36 -0.50
Habitat - wooded 0.13 -0.54

Table S20. Phylogenetic PCA of ecological opportunity variables excluding Faunivory. Given are the factor loadings as well as the
Eigenvalues and the cumulative proportion of the corresponding PC1 and PC2

PC1 PC2
Eigenvalues 2.70 1.85

Cumulative Proportion 0.27 0.45
Predation risk 0.35 0.40

Mobility in ranging area 0.36 0.48
Environmental seasonality 0.38 0.18

Frugivory 0.80 -0.27
Folivory -0.92 0.18

Extractive foraging 0.10 0.68
Diet quality 0.79 -0.29

Substrate - arboreality 0.02 -0.52
Activity - diurnality -0.43 -0.34

Habitat - wooded -0.03 -0.62

Table S21. Phylogenetic PCA of ecological opportunity variables excluding Frugivory. Given are the factor loadings as well as the
Eigenvalues and the cumulative proportion of the corresponding PC1 and PC2.

PC1 PC2
Eigenvalues 2.61 1.88

Cumulative Proportion 0.26 0.45
Predation risk -0.51 0.29

Mobility in ranging area -0.40 0.45
Environmental seasonality -0.10 0.48

Faunivory -0.67 -0.44
Folivory 0.83 0.07

Extractive foraging -0.28 0.49
Diet quality -0.89 -0.32

Substrate - arboreality -0.02 -0.52
Activity - diurnality 0.40 -0.34

Habitat - wooded 0.00 -0.66
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Table S22. Phylogenetic PCA of ecological opportunity variables excluding Folivory. Given are the factor loadings as well as the Eigenvalues
and the cumulative proportion of the corresponding PC1 and PC2.

PC1 PC2
Eigenvalues 2.22 1.86

Cumulative Proportion 0.22 0.41
Predation risk -0.59 0.13

Mobility in ranging area -0.51 0.31
Environmental seasonality -0.22 0.54

Faunivory -0.54 -0.60
Frugivory -0.49 0.06

Extractive foraging -0.36 0.34
Diet quality -0.78 -0.45

Substrate - arboreality 0.03 -0.53
Activity - diurnality 0.53 -0.21

Habitat - wooded 0.08 -0.66

Table S23. Phylogenetic PCA of ecological opportunity variables excluding Extractive foraging. Given are the factor loadings as well as
the Eigenvalues and the cumulative proportion of the corresponding PC1 and PC2.

PC1 PC2
Eigenvalues 2.90 1.83

Cumulative Proportion 0.29 0.47
Predation risk -0.39 -0.21

Mobility in ranging area -0.31 -0.31
Environmental seasonality -0.26 -0.73

Faunivory -0.52 0.61
Frugivory -0.71 -0.26

Folivory 0.93 0.02
Diet quality -0.90 0.33

Substrate - arboreality -0.05 0.40
Activity - diurnality 0.37 0.25

Habitat - wooded -0.03 0.61

Table S24. Phylogenetic PCA of ecological opportunity variables excluding Diet quality. Given are the factor loadings as well as the
Eigenvalues and the cumulative proportion of the corresponding PC1 and PC2.

PC1 PC2
Eigenvalues 2.29 1.71

Cumulative Proportion 0.23 0.40
Predation risk -0.48 -0.20

Mobility in ranging area -0.52 -0.30
Environmental seasonality -0.51 0.05

Faunivory -0.14 0.18
Frugivory -0.68 0.52

Folivory 0.77 -0.42
Extractive foraging -0.28 -0.67

Substrate - arboreality 0.15 0.54
Activity - diurnality 0.54 0.13

Habitat - wooded 0.24 0.58
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Table S25. Phylogenetic PCA of ecological opportunity variables excluding Substrate - arboreality. Given are the factor loadings as well
as the Eigenvalues and the cumulative proportion of the corresponding PC1 and PC2

PC1 PC2
Eigenvalues 2.88 1.81

Cumulative Proportion 0.29 0.47
Predation risk -0.38 0.38

Mobility in ranging area -0.32 0.55
Environmental seasonality -0.25 0.55

Faunivory -0.51 -0.56
Frugivory -0.70 0.07

Folivory 0.93 0.09
Extractive foraging -0.13 0.35

Diet quality -0.90 -0.37
Activity - diurnality 0.38 -0.43

Habitat - wooded -0.02 -0.53

Table S26. Phylogenetic PCA of ecological opportunity variables excluding Activity - diurnality. Given are the factor loadings as well as
the Eigenvalues and the cumulative proportion of the corresponding PC1 and PC2.

PC1 PC2
Eigenvalues 2.80 1.84

Cumulative Proportion 0.28 0.46
Predation risk 0.35 0.28

Mobility in ranging area 0.24 0.34
Environmental seasonality 0.24 0.62

Faunivory 0.56 -0.45
Frugivory 0.70 0.17

Folivory -0.94 -0.05
Extractive foraging 0.09 0.39

Diet quality 0.93 -0.25
Substrate - arboreality 0.04 -0.55

Habitat - wooded 0.04 -0.72

Table S27. Phylogenetic PCA of ecological opportunity variables excluding Habitat - wooded. Given are the factor loadings as well as
the Eigenvalues and the cumulative proportion of the corresponding PC1 and PC2.

PC1 PC2
Eigenvalues 2.78 1.79

Cumulative Proportion 0.28 0.46
Predation risk 0.30 0.37

Mobility in ranging area 0.24 0.74
Environmental seasonality 0.23 0.35

Faunivory 0.48 -0.45
Frugivory 0.73 0.00

Folivory -0.93 0.08
Extractive foraging 0.03 0.53

Diet quality 0.90 -0.31
Substrate - arboreality 0.08 -0.26

Activity - diurnality -0.36 -0.57
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Table S28. Estimates and p-values of the effects of the PCs of ecological opportunities on relative brain size (multiple PGLS regression).
In the first row the result of the original analysis is given, in the subsequent rows, the results are based on PCs from pPCAs where
systematically each of the variable is left out. All analyses are based on the maximum sample size used for the original analysis N=50.

PC1 PC2
estimate p-value estimate p-value

all variables - original analysis 0.0061 0.0102 0.0034 0.0516
excluding Predation risk 0.0043 0.0295 0.0027 0.0591
excluding Mobility in ranging area 0.0058 0.0137 0.0054 0.0079
excluding Environmental seasonality 0.0055 0.0320 0.0033 0.1119
excluding Faunivory 0.0072 0.0031 0.0021 0.2470
excluding Frugivory 0.0042 0.0972 0.0028 0.1008
excluding Folivory 0.0061 0.0170 0.0020 0.2488
excluding Extractive foraging 0.0057 0.0121 0.0040 0.0224
excluding Diet quality 0.0077 0.0012 0.0011 0.5344
excluding Substrate - arboreality 0.0061 0.0099 0.0038 0.0339
excluding Activity - diurnality 0.0060 0.0122 0.0043 0.0201
excluding Habitat - wooded 0.0064 0.0128 0.0040 0.0684
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Social and Ecological Opportunities - models based on common sample

Table S29. Jackknife resampling (over tips) of PGLS regression model including all four opportunity PCs: Niter =1000, subsample size
=34 (80% of N=43). Given are the original estimates and corresponding p-values from the original PGLS regression as well as the mean
estimates and 95% confidence intervals (CI) of the jackknifed sample.

True estimate p-value Jackknife mean estimate Jackknife 95% CI
(Intercept) -1.675 0.002 -1.794 [-2.4899, -1.2383]

log(Body.Mass) 0.671 0.000 0.685 [0.619, 0.7582]
PC1.Social.Opportunity 0.004 0.442 0.005 [-3e-04, 0.0122]
PC2.Social.Opportunity -0.001 0.699 -0.000 [-0.0034, 0.0037]

PC1.Ecological.Opportunity 0.007 0.024 0.008 [0.0053, 0.0123]
PC2.Ecological.Opportunity 0.005 0.090 0.005 [0.0016, 0.0097]

Table S30. Model selection based on Akaike Information Criterion (AIC). PGLS models with log brain size as the response and the social
and ecological opportunity PCs as predictor variables. Models are based on the common sample of social and ecological opportunities
(N = 43) and include log body mass as a covariate. Given are the estimates and corresponding p-values in brackets.

AIC PC1 social opp. PC2 social opp. PC1 ecological opp. PC2 ecological opp.

model 1 -26.51 0.006 (0.231) 0.001 (0.761) - -
model 2 -33.49 - - 0.008 (0.010) 0.004 (0.109)
model 3 -31.07 0.003 (0.514) - 0.007 (0.037) -
model 4 -26.10 - 0.001 (0.841) - 0.003 (0.335)
model 5 -28.28 0.006 (0.158) - - 0.004 (0.199)
model 6 -30.66 - <0.001 (0.920) 0.007 (0.022) -
model 7 -30.31 0.004 (0.442) -0.001 (0.699) 0.007 (0.024) 0.005 (0.090 )

Relationships between Social and Ecological Opportunities

Table S31. Relationships between social and ecological opportunity PCs. PGLS models are based on the common sample of social and
ecological opportunity variables (N = 43). Given are the estimates and corresponding p-values.

Response variable Predictor variable estimate p-value

PC1 social opp. PC1 ecological opp. 0.072 0.549
PC1 social opp. PC2 ecological opp. -0.028 0.804
PC2 social opp. PC1 ecological opp. 0.076 0.527
PC2 social opp. PC2 ecological opp. 0.154 0.173

PC1 ecological opp. PC1 social opp. 0.122 0.549
PC1 ecological opp. PC2 social opp. 0.128 0.523
PC2 ecological opp. PC1 social opp. 0.160 0.204
PC2 ecological opp. PC2 social opp. 0.186 0.142
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Social Consequences

Table S32. Phylogenetic PCA of social consequence variables. N=60; lambda=0.24. Given are the factor loadings as well as the
Eigenvalues and the cumulative proportion of the corresponding factors.

PC1 PC2 PC3 PC4
Eigenvalues 2.2814 0.8267 0.5271 0.3647

Cumulative Proportion 0.5704 0.7770 0.9088 1.0000
Social learning frequency 0.7839 0.0346 0.6200 0.0008

Coalition formation 0.7306 0.5515 -0.2336 0.3278
Social hunting 0.8559 0.0310 -0.2503 -0.4515

Food sharing among adults 0.6330 -0.7214 -0.1597 0.2312

Table S33. Phylogenetic PCA of social consequence variables excluding Social learning frequency. Given are the factor loadings as well
as the Eigenvalues and the cumulative proportion of the corresponding PC1 and PC2.

PC1 PC2
Eigenvalues 1.81 0.83

Cumulative Proportion 0.60 0.88
Coalition formation -0.75 0.58

Social hunting -0.89 0.04
Food sharing among adults -0.67 -0.70

Table S34. Phylogenetic PCA of social consequence variables excluding Coalition formation. Given are the factor loadings as well as the
Eigenvalues and the cumulative proportion of the corresponding PC1 and PC2.

PC1 PC2
Eigenvalues 1.90 0.63

Cumulative Proportion 0.63 0.84
Social learning frequency -0.79 -0.46

Social hunting -0.84 -0.13
Food sharing among adults -0.75 0.63

Table S35. Phylogenetic PCA of social consequence variables excluding Social hunting. Given are the factor loadings as well as the
Eigenvalues and the cumulative proportion of the corresponding PC1 and PC2.

PC1 PC2
Eigenvalues 1.68 0.82

Cumulative Proportion 0.56 0.83
Social learning frequency -0.84 -0.06

Coalition formation -0.73 -0.57
Food sharing among adults -0.66 0.71

Table S36. Phylogenetic PCA of social consequence variables excluding Food sharing among adults. Given are the factor loadings as well
as the Eigenvalues and the cumulative proportion of the corresponding PC1 and PC2.

PC1 PC2
Eigenvalues 2.01 0.56

Cumulative Proportion 0.67 0.86
Social learning frequency -0.79 0.59

Coalition formation -0.81 -0.46
Social hunting -0.85 -0.11
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Table S37. Estimates and p-values of the effects of relative brain size on PC1 and PC2 of the social consequences (mulitple PGLS
regression). In the first row the result of the original analysis is given, in the subsequent rows, the results are based on PCs from pPCAs
where systematically each of the variable is left out. All analyses are based on the maximum sample size used for the original analysis
N=60.

PC1 PC2
estimate p-value estimate p-value

all variables - original analysis 16.9897 0.0039 8.2686 0.0819
excluding Social learning frequency 17.1027 0.0019 8.9190 0.0681
excluding Coalition formation 13.5149 0.0383 -0.9076 0.7696
excluding Social hunting 13.2897 0.0075 -8.3163 0.0795
excluding Food sharing among adults 15.5943 0.0019 -5.0924 0.0641

Excluding outliers - Cebus capucinus, Cebus apella, Pan troglodytes

Table S38. PGLS. Response: PC1.Social.consequences; N=57; R2=0.14; λ=0; AIC=376.18

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.164 9.678 0.430 0.669

log(Body.Mass) -3.468 2.654 -1.307 0.197
log(Brain.Size) 6.120 3.267 1.873 0.066
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Ecological Consequences

Table S39. Phylogenetic PCA of ecological consequence variables. N=53; lambda=0.77. Given are the factor loadings as well as the
Eigenvalues and the cumulative proportion of the corresponding factors.

PC1 PC2 PC3 PC4 PC5
Eigenvalues 2.1107 1.4236 0.6438 0.4845 0.3374

Cumulative Proportion 0.4221 0.7069 0.8356 0.9325 1.0000
Degree of buffering env. seasonality 0.1128 0.8661 0.2546 0.4003 0.1094

Diet breadth 0.4652 0.6695 -0.4735 -0.3253 0.0736
Hunting 0.7692 0.1049 0.5206 -0.3040 -0.1838
Tool use 0.8151 -0.1926 -0.2876 0.3476 -0.3080

Innovation frequency 0.7908 -0.4209 0.0322 0.0716 0.4374

Table S40. PGLS. Response: PC2.Ecological.consequences; N=53; R2=0.19; λ=1; AIC=361.35

Estimate Std. Error t value Pr(>|t|)
(Intercept) 45.791 16.592 2.760 0.008

log(Body.Mass) -14.473 4.266 -3.392 0.001
log(Brain.Size) 19.063 5.705 3.341 0.002

Table S41. Phylogenetic PCA of ecological consequence variables excluding Degree of buffering env. seasonality. Given are the factor
loadings as well as the Eigenvalues and the cumulative proportion of the corresponding PC1 and PC2.

PC1 PC2
Eigenvalues 2.09 0.95

Cumulative Proportion 0.52 0.76
Diet breadth -0.42 0.88

Hunting -0.75 0.07
Tool use -0.82 -0.13

Innovation frequency -0.81 -0.39

Table S42. Phylogenetic PCA of ecological consequence variables excluding Diet breadth. Given are the factor loadings as well as the
Eigenvalues and the cumulative proportion of the corresponding PC1 and PC2.

PC1 PC2
Eigenvalues 2.22 1.04

Cumulative Proportion 0.56 0.81
Degree of buffering env. seasonality -0.14 0.98

Hunting -0.83 0.12
Tool use -0.87 -0.02

Innovation frequency -0.87 -0.25

Table S43. Phylogenetic PCA of ecological consequence variables excluding Hunting. Given are the factor loadings as well as the
Eigenvalues and the cumulative proportion of the corresponding PC1 and PC2.

PC1 PC2
Eigenvalues 1.67 1.39

Cumulative Proportion 0.42 0.77
Degree of buffering env. seasonality 0.27 0.81

Diet breadth -0.20 0.84
Tool use -0.88 0.15

Innovation frequency -0.89 -0.09
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Table S44. Phylogenetic PCA of ecological consequence variables excluding Tool use. Given are the factor loadings as well as the
Eigenvalues and the cumulative proportion of the corresponding PC1 and PC2.

PC1 PC2
Eigenvalues 1.64 1.35

Cumulative Proportion 0.41 0.75
Degree of buffering env. seasonality -0.47 0.74

Diet breadth -0.68 0.43
Hunting -0.81 -0.30

Innovation frequency -0.54 -0.72

Table S45. Phylogenetic PCA of ecological consequence variables excluding Innovation frequency. Given are the factor loadings as well
as the Eigenvalues and the cumulative proportion of the corresponding PC1 and PC2.

PC1 PC2
Eigenvalues 1.75 1.13

Cumulative Proportion 0.44 0.72
Degree of buffering env. seasonality -0.52 0.74

Diet breadth -0.75 0.33
Hunting -0.73 -0.33
Tool use -0.63 -0.61

Table S46. Estimates and p-values of the effects of relative brain size on PC1 and PC2 of the ecological consequences (mulitple PGLS
regression). In the first row the result of the original analysis is given, in the subsequent rows, the results are based on PCs from pPCAs
where systematically each of the variable is left out. All analyses are based on the maximum sample size used for the original analysis
N=53. ∗Numerical optimization problem using PGLS in the package caper, alternatively applied bayesian phylogenetic mixed model in the package MCMCglmm, yielding equivalent
results.

PC1 PC2
estimate p-value estimate p-value

all variables - original analysis 18.4526 0.0024 15.8780 0.0010
excluding Degree of buffering env. seasonality 16.3623 0.0059 12.0691 0.0047
excluding Diet breadth 21.2454 0.0116 13.8787 0.0012
excluding Hunting 7.4136 0.1108 17.6009 0.0000
excluding Tool use 19.6248 0.0000 9.6581 0.0568
excluding Innovation frequency * 24.4871 0.0004 5.0702 0.2681

Excluding outliers - Cebus capucinus, Cebus apella, Pan troglodytes

Table S47. PGLS. Response: PC1.Ecological.consequences; N=50; R2=0.29; λ=0; AIC=309.09

Estimate Std. Error t value Pr(>|t|)
(Intercept) 18.665 8.729 2.138 0.038

log(Body.Mass) -7.560 2.202 -3.433 0.001
log(Brain.Size) 10.810 2.655 4.071 0.000
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Relationship between social and ecological consequences

Table S48. PGLS. Response: PC1.Social.consequences; N=32; R2=0.84; λ=0; AIC=221.43

Estimate Std. Error t value Pr(>|t|)
(Intercept) -16.238 13.487 -1.204 0.239

PC1.Ecological.consequences 1.365 0.130 10.489 0.000
log(Body.Mass) 6.063 3.702 1.638 0.113
log(Brain.Size) -8.421 4.861 -1.732 0.094

Table S49. PGLS. Response: PC1.Ecological.consequences; N=32; R2=0.87; λ=0; AIC=194.27

Estimate Std. Error t value Pr(>|t|)
(Intercept) 16.380 8.503 1.927 0.064

PC1.Social.consequences 0.584 0.056 10.489 0.000
log(Body.Mass) -6.391 2.229 -2.868 0.008
log(Brain.Size) 9.228 2.856 3.232 0.003

Excluding outliers: Cebus capucinus, Cebus apella, Pan troglodytes

Table S50. PGLS. Response: PC1.Social.consequences; N=29; R2=0.41; λ=0; AIC=186.95

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.426 1.094 -0.389 0.700

PC1.Ecological.consequences 0.669 0.155 4.319 0.000

Table S51. PGLS. Response: PC1.Social.consequences; N=29; R2=0.44; λ=0; AIC=189.5

Estimate Std. Error t value Pr(>|t|)
(Intercept) -11.117 12.168 -0.914 0.370

PC1.Ecological.consequences 0.765 0.182 4.198 0.000
log(Body.Mass) 3.583 3.283 1.091 0.286
log(Brain.Size) -4.783 4.225 -1.132 0.268

Table S52. PGLS. Response: PC1.Ecological.consequences; N=29; R2=0.41; λ=0; AIC=184.32

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.031 1.048 -0.029 0.977

PC1.Social.consequences 0.611 0.141 4.319 0.000

Table S53. PGLS. Response: PC1.Ecological.consequences; N=29; R2=0.57; λ=0; AIC=179.41

Estimate Std. Error t value Pr(>|t|)
(Intercept) 15.058 9.947 1.514 0.143

PC1.Social.consequences 0.540 0.129 4.198 0.000
log(Body.Mass) -6.122 2.545 -2.406 0.024
log(Brain.Size) 8.978 3.166 2.835 0.009
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Reclassification of opportunities to consequences:

fission-fusion and extractive foraging

Reclassifiying fission-fusion and extractive foraging as consequence variables made the original results

even stronger. The factor loadings of pPCA on the opportunity variables are equivalent to the original

analysis (Table S54), and the subsequent PGLS regressions show even stronger evidence for ecological

rather than social factors driving brain size evolution. In fact, whereas the social opportunity PCs show

no effect on brain size (PGLS: N = 67, λ = 0.99, βPC1social = 0.005 (p = 0.114); βPC2social = 0.004

(p = 0.157)), both PCs of the ecological domain show significant effects (PGLS: N = 50, λ = 1.00,

βPC1ecology = 0.006 (p = 0.012); βPC2ecology = 0.004 (p = 0.022)). These results hold when combining

the four PCs into a single regression model (PGLS: N = 43, λ = 1.00, βPC1social = 0.002 (p = 0.655);

βPC2social = 0.004 (p = 0.358), βPC1ecology = 0.006 (p = 0.030); βPC2ecology = 0.005 (p = 0.045)).

Table S54. Phylogenetic PCA of opportunity variables.

A Social opportunities PC1 PC2 B Ecological opportunities PC1 PC2

Eigenvalues 2.252 2.150 Eigenvalues 2.900 1.826
Cumulative Proportion 0.225 0.440 Cumulative Proportion 0.290 0.473

Social system - Multi M/F group 0.597 -0.304 Diurnality -0.369 -0.255
Group size 0.590 0.156 Wooded habitat 0.031 -0.612

Gregariousness 0.439 -0.556 Arboreality 0.048 -0.400
HR overlap 0.268 0.363 Predation risk 0.392 0.207

Vocal terr. advertisement -0.696 -0.324 Mobility in ranging area 0.307 0.306
Dispersal -0.420 0.093 Environmental seasonality 0.258 0.728

Mating system - Polygynandry 0.654 -0.045 Faunivory 0.519 -0.615
Body size dimorphism 0.168 0.838 Frugivory 0.709 0.265

Visual trait dimorphism -0.207 0.824 Folivory -0.928 -0.015
Cooperative breeding -0.352 -0.308 Diet quality 0.903 -0.334
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Also in case of the consequences, the pPCA as well as the subsequent PGLS regressions result in

equivalent patterns as the original analysis. For the ecological and social domain, all variables load

highly on the first PC (Table S55), and relative brain size shows strong effects on both, the social and

ecological consequence PC (socio-cognitive PC1 PGLS: N = 55, λ = 0.00, βBrain = 16.393 (p = 0.007);

eco-cognitive PC1 PGLS: N = 53, λ = 0.91, βBrain = 20.033 (p = 0.015); eco-cognitive PC2 PGLS:

N = 53, λ = 0.00, βBrain = 17.910 (p < 0.001)). Also the relationsip between the social and

ecological consequence PCs is highly significant (PGLS: N = 31, λ = 0.00, βPC1EcologicalCons. = 0.889

(p < 0.001)), whereas there is no relationship between the opportunity PCs (results not shown).

Table S55. Phylogenetic PCA of consequence variables.

A Socio-cognitive consequences PC1 B Eco-cognitive consequences PC1

Eigenvalues 2.367 Eigenvalues 2.510
Cumulative Proportion 0.474 Cumulative Proportion 0.418

Extractive foraging 0.652
Fission-fusion 0.359 Buffering env. seasonality 0.020

Social learning frequency 0.776 Diet breadth 0.426
Coalition formation 0.732 Hunting 0.738

Social hunting 0.835 Tool use 0.807
Food sharing among adults 0.634 Innovation frequency 0.841
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Chapter 6

General Discussion

General Implications and Future Research

This dissertation aimed to explain parts of the large variation in relative brain size among vertebrate

lineages in relation to social and ecological factors, as well as to the interplay between those factors.

Using a phylogenetic comparative approach, I tested specific hypotheses and integrated a broad range

of factors from the social and ecological domain into a comprehensive framework which differentiates

between potential drivers and cognitive consequences of enlarged brains.

Niche Complexity and Cultural Intelligence

The first part of this thesis investigated how extended periods of development and nutritional depen-

dence, representing extended opportunities for acquiring skills, are linked to the evolution of relative

brain size and cognition in primates, carnivorans (chapter 2) and birds (chapter 3). The cultural in-

telligence hypothesis proposes that more opportunities for socially mediated learning (time or number

of tolerant role models) is closely linked to the size and complexity of skill repertoires and ultimately

to increased relative brain size.

In chapter 2, we found evidence for two different basic life history pathways which allow for extended

periods of learning: elongating the duration of post-weaning provisioning and decelerating the pace of

development. Both serve as buffers against energetic deficits reducing the risk of brain starvation and

concomitantly offer more time to practice or (socially) acquire skills. Different mammalian orders were

shown to use either one or the other of these life history pathways. Whereas in carnivorans foraging

niche complexity increases with prolonged periods of post-weaning provisioning, primates living in

complex foraging niches rather exhibit a slowed-down pace of development. The discrepant findings

in the life-history pathways between primates and carnivorans are most likely explained by funda-

mental differences in their feeding biology. Primates largely rely on small and easily accessible (albeit

not necessarily easily processed) food items including leaves, insects and fruits, which are difficult to

monopolise but do not necessitate active provisioning of the young. Many carnivorans, on the other

hand, actively hunt large prey, often even cooperatively. This may explain why in carnivorans young

individuals strongly depend on active provisioning during the period of skill acquisition, whereas in

primates this in not the case.

Furthermore, we showed that in primates, but not in carnivorans, the degree of foraging niche com-

plexity is positively related to relative brain size. In primates this supports the notion of the cultural

intelligence hypothesis suggesting an evolutionary feedback loop between extended opportunities for

skill acquisition, complex foraging niches and an increase in brain size. In carnivorans, on the other
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hand, the lack of such a correlation suggests that the interaction with a complex foraging niche, as

defined in chapter 2, does not necessarily require enhanced cognitive abilities, and these skills are

simply practiced until full competence is reached.

Linked to these discrepant findings, the two mammalian groups show general differences in forag-

ing behavior and relative brain size. Primates live on average in more complex foraging niches (e.g.

extractive foraging and tool use are more common), show a larger behavioral repertoire (Changizi

2003) as well as increased levels of behavioral flexibility (Holekamp 2007) compared to carnivorans.

Additionally, primates show a general grade-shift in relative brain size, being relatively larger brained

compared to carnivorans (Boddy et al. 2012, cf. Holekamp et al. 2013).

One potential explanation for these discrepancies may be the morphological differences between the

two lineages that are based on different feeding biologies.

First, primate species have hands, while most carnivorans have paws. This may ultimately shape the

evolution of cognition differently in the two lineages. Hands in contrast to paws allow for high levels

of manipulative complexity, which are closely linked to complex food processing techniques including

extractive foraging and tool use (Heldstab et al. 2016). These more complex techniques, which occur

mostly in primates and much less often in carnivorans, are learned late during ontogeny and are pro-

posed to be the cognitively demanding elements of a foraging niche (Gunst et al. 2010, Meulman et al.

2013, Melin et al. 2014, Heldstab et al. 2016, Heldstab et al. in prep.). Similarly, the actual degree

of manipulation complexity is correlated with relative brain size in primates (Heldstab et al. 2016),

but not in carnivorans (Iwaniuk et al. 1999). In addition, Holekamp et al. (2013) suggested that the

difference between hands and paws may have implications for opportunities for social learning during

ontogeny. Grasping hands allow young to cling onto the parents’ fur and therefore primates have the

chance to observe and learn the interactions with the ecological (and social) environment from early

on. In carnivorans, on the other hand, offspring are often left behind while parents go out and hunt.

Put in a larger context, more opportunities for social learning in primates compared to carnivorans

might promote the effect of cultural intelligence and thus also the evolution of brain size.

Second, the discrepancy in relative brain size and its relation with foraging niche complexity between

the two lineages might be based on craniofacial constraints due to diet. The morphology of the carnivo-

ran skull may be subject to a stronger trade-off between the extremely pronounced feeding apparatus

required for feeding on prey and the brain case, and thus brain size (Holekamp et al. 2013). There-

fore, brain size evolution in carnivorans in general might be more constrained compared to primates,

entailing lower variation upon which selection can act on (Holekamp et al. 2013).

Besides morphological adaptations, higher levels of unavoidable mortality (e.g. infectious diseases)

may further constrain brain size evolution in carnivorans. Thus, the life-history filter, which prevents

the evolution of larger brains if their benefit for survival is limited by factors that cannot be influenced

by increased cognitive abilities, may be more severe in carnivorans than in primates. In other words, if

the costs of developing bigger brains are too high, the coevolutionary process between social learning,

complex foraging niches and enhanced cognition is also less likely to be favored by evolution (Burkart

and van Schaik 2010).

Taken together, the discrepancy in life history characteristics, niche complexity and brain size be-

tween primates and carnivorans might be the result of differences in feeding biology and the related

morphological constraints (limbs and skull) as well as a more severe life-history filter. Even though

both lineages are presumably subject to similar selective pressures, adaptations in ancestral forms

together high levels of extrinsic mortality may have prevented evolutionary responses, i.e. increase in
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brain size, in one lineage (carnivorans) but not the other (primates) (Holekamp et al. 2013).

Although we found no correlation between foraging niche complexity and brain size in carnivoran

species, it is premature to reject the cultural intelligence hypothesis for carnivorans. It might not

be the cumulative sum of foraging niche complexity, but rather specific elements which are linked to

the evolution of cognition. Indeed, social hunting does not only need prolonged periods of learning

(Schuppli et al. 2012), but we also found that it is associated with enlarged brains in carnivorans,

unlike extractive foraging or diet breadth. In agreement with this speculation, earlier work has sug-

gested that primarily carnivorous carnivorans show increased relative brain sizes due to more complex

foraging techniques and processing involved in hunting prey (Gittleman 1986, Swanson et al. 2012).

Besides that, the time to nutritional independence, which is correlated with increased foraging niche

complexity, represents only one dimension of opportunities for social learning in carnivorans. Many

carnivoran species show extremely high levels of sociality and cooperation, entailing increased levels

of social tolerance (Smith et al. 2012, Burkart et al. 2014). In order to further investigate the links

between opportunities for social learning, foraging complexity and the evolution of cognition, more

targeted studies are required where the foraging strategies should be characterised in more detail (e.g.

individual hunting vs. social hunting, small prey vs. big prey, immobile prey vs. mobile prey) and

further dimensions of opportunities for social learning (e.g. number of tolerant role models, degree of

cooperation and thus social tolerance) should be taken into account.

In birds, the results of chapter 3 showed that extended opportunities for socially mediated skill trans-

mission coevolved with increased relative brain size. We further found that the time in association

with tolerant role models is related to relative brain size even after we additionally control for the

effect of long-term pair bonding. A derived version of the social brain hypothesis proposes that high

levels of cooperation and negotiation in long-lasting pair bonds are the driving forces in the evolution

of enhanced cognitive abilities (Shultz and Dunbar 2010). Based on our results, however, we suggest

that intensive cooperation in species with strong pair bonding entail high levels of social tolerance

that in turn facilitate social learning. In other words, we suggest that the effect of long-term pair

bonding on brain size, found by Shultz and Dunbar (2010), represents family living in terms increased

opportunities for social learning, rather than the dynamics of pair-bonding.

Furthermore, we found striking differences between the two major lineages of birds. Passerine species

clearly show the pattern described above, whereas no effect was found for non-passerine species. We

suggest that fundamental differences in metabolism and vulnerability to starvation may lead to differ-

ences in the need to socially acquire complex skills, which allow passerines access to highly nutritive

food sources. These differences, however, have yet to be tested empirically by looking at links with

foraging niche complexity and habitat seasonality.

It should be noted that the high degree of mobility in birds makes niche complexity much more flexible

than in mammals, entailing high levels of intraspecific variation in the former. Furthermore, the skill

repertoire of a bird includes more than only foraging skills, as there is a large variety within the forag-

ing dimension of a niche regarding habitat selection, search methods/patterns, food recognition and

selection, prey capture and handling techniques (reviewed in Wunderle 1991). Finally, in birds, par-

ticular morphological adaptations enable them to explore specific niches (e.g. hummingsbirds showing

co-evolution with ornithophilous flowers), which means that although the niche may appear complex

to us, an individual bird does not necessarily have to learn or understand much. Therefore, capturing

the dimensions of what makes a niche more or less complex in birds is hard to quantify on a species

level and a rough classification into mobile prey, extractive foraging and tool use as applied in mam-

mals (chapter 2) is not appropriate. To further consolidate the predictions of the cultural intelligence
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hypothesis in birds, future studies are therefore necessary to develop appropriate measures of niche

complexity. Furthermore, including measures of seasonal variation in diet composition and energy

intake similarly to the methodology used in chapter 4 could be helpful to investigate the discrep-

ancy between passerines and non-passerines. This may yield further insights into whether passerine

species do indeed rely on more complex foraging techniques to buffer lean periods than non-passerines.

In sum, both the findings from chapter 2 and 3 confirm the predictions of the cultural intelligence

hypothesis, particularly in primates and birds and suggest that the evolution of enlarged brains is only

feasible in species in which an enlarged and more complex skill repertoire can be acquired and socially

learned over prolonged time periods. Therefore, the interplay between social factors in terms of socially

mediated learning and ecological factors in terms of complex skills and foraging niches is indispensable

for understanding the evolution of relative brain size. In carnivorans, future studies should be more

targeted in characterizing the complexity of a foraging niche to test whether the cultural intelligence

hypothesis holds across all major mammalian lineages. And in birds, the link between opportunities

for social learning and brain size should be set in context with the size of skill repertoires and niche

complexity.

Seasonality and the Evolution of Brain Size

In chapter 4 we integrated the cost and benefit perspective of ecological factors by investigating how

the evolution of brain size is affected by seasonality. We tested the concomitant effects of two non-

exclusive hypotheses in a sample of non-primate mammals: (i) the cognitive buffer hypothesis, which

suggests large-brained species are better at coping with seasonally lean periods, and (ii) the expensive

brain hypothesis, which proposes that seasonal fluctuations in food availability impose energetic con-

straints on the evolution of enlarged brains. Previous studies in anthropoid primates found evidence

for both hypotheses (van Woerden et al. 2012, 2014). In lemurs, however, evidence for the expensive

brain hypothesis but only weak support for the cognitive buffer hypothesis was found (van Woerden

et al. 2010). Building up on these studies, we also used independent measures for environmental

seasonality (i.e. fluctuations environmental productivity) and actually experienced seasonality (i.e.

fluctuations in energy-rich diet composites). The expensive brain hypothesis was consolidated as a

ubiquitous pattern among all so far investigated mammalian species. However, comparable to the

findings in lemurs, we found only weak support for the cognitive buffer hypothesis in non-primate

mammals. Thus, a cognitive buffer effect does not seem to be a ubiquitous pattern in mammals.

We suggest that extremely high metabolic and developmental costs of increased brain size as well as

periods of unavoidable starvation in extreme seasonal habitats may make cognitive buffering a less

feasible strategy in lemurs and non-primate mammals. Instead, selection seems to favor shifts in diet

towards high quality foods (e.g. meat) and physiological buffering including hibernation and adipose

depots.

This absence of a clear cognitive effect outside of anthropoid primates falls in line with the findings

from chapter 2 that provide evidence for an association between niche complexity and relative brain

size only among primates, but not among carnivorans (including also omnivorous carnivorans). Again,

as discussed in the previous section, this fundamental difference between primate and carnivoran brain

size evolution might be based on ancestral adaptations in morphology (limbs and skull) as well as dif-

ferent degrees of severity of the life-history filter.

In our study on seasonality, we did not include strict carnivorans and strict herbivores because there

is no seasonal variation in diet composition or in the relative proportion of the diet component with
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the highest nutrient density. To proxy the experienced fluctuations in the energetic intake over the

year in such species, a more direct measure of actual intake such as prey capture rate or time spent

feeding would be needed.

We expect that also within those two groups a higher annual variation in energy intake constrains the

evolution of brain size. However, for strict carnivorans, relying primarily on meat, we would predict

that they experience relatively lower fluctuations in the caloric intake compared to other mammalian

groups. The availability of animal prey (excluding invertebrates) as a high quality food resource is

much less sensitive to fluctuations in environmental seasonality and thus enables a predator or scav-

enger to meet the minimum energetic requirements throughout the year, even in extremely seasonal

habitats. Together with the overall improved diet quality, this may therefore explain why primarily

carnivorous carnivorans have relatively larger brains than omnivorous and insectivorous carnivorans

(Gittleman 1986, Swanson et al. 2012). Also, efficient and successful hunting techniques (e.g. coop-

erative hunting) seem not only to require elongated periods of learning (Schuppli et al. 2012), but

also enhanced cognitive abilities, in carnivorans (chapter 2: Table S4) and also primates (chapter 5:

relative brain size vs. socio-cognitive consequences including social hunting). However, whether these

sophisticated hunting techniques and the potential link to cognition represents cognitive buffering

needs to be tested in more detail.

In strict herbivores relying exclusively on leaves, shrubs and herbs, one might predict that the process-

ing does not require higher cognitive capacity (cf. van Woerden 2011). Furthermore, on average the

predation risk may be higher in herbivores compared to carnivorans (increased severity of life-history

filter), which would make cognitive buffering a less feasible strategy.

However, more detailed characterization of dietary habits and an assessment of experienced seasonality

through more direct measures of the seasonal variation in the actual energetic input (or expenditure,

i.e. field metabolic rate) are required. Currently this data has not been compiled for a large and broad

enough sample of species, and would require targeted studies.

What is cognitive buffering?

In both primates and non-primate mammals, the degree of buffering is measured by the difference

between fluctuations in dietary composition relative to the fluctuations in environmental productivity.

This quantification implies that in both groups buffering comprises some sort of dietary flexibility.

Brain size is, however, only clearly associated with the degree of buffering in anthropoids, but not in

lemurs and non-primate mammals. This suggests therefore that only in higher primates the stabilized

energy intake goes together with enhanced cognition. To further understand the evolution of cogni-

tion, it is important to understand what are the cognitively demanding dietary adaptations used to

buffer seasonality in higher primates, or in other words, what cognitive buffering actually comprises.

Primates rely mostly on hard-to-access resources as fallback foods such as roots or embedded inverte-

brates (Kaplan et al. 2000, Johnson and Bock 2004, Marshall and Wrangham 2007, Melin et al. 2014),

which often require extractive foraging and tool use and have been suggested to be the cognitively

demanding elements of a foraging niche (Melin et al. 2014, van Woerden et al. 2012). One might

therefore expect skills used for cognitively buffering environmental seasonality to also be part of more

complex foraging niches, particularly more complex knowledge niches (including extractive foraging

and tool use). Posterior analyses using a common sample of primates with data of the knowledge niche

complexity score from chapter 2 and the measurements of the degree of buffering from van Woerden et

al. (2014), however, show no significant association between the two in anthropoid primates (PGLS:

N = 34, λ = 0.94, response = knowledge niche complexity, predictor = degree of buffering, estimate

= -2.65, p = 0.10, R2 = 0.08). Furthermore, the PCA of the ecological consequences in chapter 5 sep-
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arates extractive foraging and tool use from the degree of buffering, which also suggests that cognitive

buffering is not necessarily linked to sophisticated foraging techniques. Similarly, one could predict

that increasing levels of manipulative complexity used for sophisticated foraging techniques (Heldstab

et al. 2016) reflect the cognitively demanding aspects of exploiting alternative food resources, i.e.

buffering in higher primates. However, a systematic score measuring the degree of manipulation com-

plexity, which is closely linked to brain size (Heldstab et al. 2016, unpublished data S. Heldstab), also

yields no significant correlation with the degree of buffering in anthropoid primates (PGLS: N = 20,

λ = 1.00, response = manipulation complexity, predictor = degree of buffering, estimate = -3.20, p =

0.10, R2 = 0.14).

Overall, this would suggest that cognitive buffering of seasonally lean periods, as found across an-

thropoid primates, is not necessarily related to sophisticated technology involving high degrees of

manipulative complexity. In orangutans it is known that complex foraging techniques (extractive for-

aging and tool use) are not necessarily used during the lean season, but mainly during the season when

fruits and seeds are abundant (Koops et al. 2014; Schuppli, van Schaik and van Noordwijk unpublished

data). Furthermore, a comparative study including chimpanzees, orangutans and capuchin monkeys

showed that the evolution of complex technology, e.g. tool use, is related to environmental opportu-

nities (resource density and amount of terrestriality), rather than to the necessity to compensate for

seasonal lack of preferred foods (Koops et al. 2014). This suggests that complex foraging technologies

and high manipulative complexity, which requires a relatively large brain (Heldstab et al. 2016), have

not evolved primarily to compensate for seasonally lean periods, but rather enhance continuous access

to high quality food resources, increasing the general total energy intake throughout the year.

In chapter 5 our results showed that the degree of buffering environmental seasonality shares high

proportions of variation with dietary breadth in primates (PC2). Further posterior analyses reveal

that diet breadth explains quite a bit of variation in the degree of buffering (PGLS: N = 42, λ = 0.70,

response = degree of buffering, predictor = diet breadth, estimate = 0.05, p = 0.004, R2 = 0.19).

Therefore, cognitive buffering may mainly allow for a broad, general diet and the required knowledge

for the spatio-temporal distribution of resources, i.e. when and where to find what. One way to em-

pirically test this hypothesis would be to look at the ranging behavior of various species. If a species

has a clear mental representation of its physical environment and its foraging niche, individuals are

expected to move in a more goal-directed fashion from food patch to food patch. Otherwise, individ-

uals are expected to show rather random ranging patterns. In any case, yet more targeted studies,

which systematically test for factors best explaining the fluctuations in direct measures of energetic

input are needed.

The Concept of Opportunities and Consequences

The aim of chapter 5 was to combine social and ecological hypotheses and their correlates of brain size

evolution by integrating a wide range of factors. We suggested a conceptual approach distinguishing

between potential selective pressures, referred to as opportunities, and eco- and socio-cognitive abilities

which are enabled once a large brain has evolved, referred to as consequences. The aim of this study

was twofold: first, to solve the long-lasting debate on whether ecological or social factors are the main

drivers of increased brain size in primates; and second, to emphasize that understanding the evolution

of cognition is not only about finding the main potential drivers which enable brains to become bigger.

It is also about using the variation in brain size itself to explain why certain species show specific eco-

and socio-cognitive behaviors whereas others do not. In other words, statistically speaking, relative

brain size should be used as both dependent and independent (explanatory) variable. Thereby, this
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conceptual framework helps to understand the evolution of cognition from a much broader and more

comprehensive perspective.

Regarding evolutionary opportunities, our analyses showed stronger statistical support for potential

ecological rather than social selection pressures, suggesting that selection on brain size in primates

reflects ecological more than social preconditions. Since both of the two principal components of ecolog-

ical opportunities, diet and habitat stability, showed a significant effect or a strong trend with relative

brain size, this result is not uniquely attributable to either of the two characteristics, but rather means

that an ecological niche in its entirety enables increased encephalization. More challenging ecological

niches do not only pose selective pressures but also provide a species access to an increased energy

intake, which directly supports an increase in brain size. This finding is consistent with the expensive

brain framework (Isler and van Schaik 2009) and the corresponding findings in chapter 4. We showed

that an increase in brain size is possible only where ecological conditions favor a net increase in energy

through either a generally improved diet quality (PC1 of ecological opportunities) or greater habitat

stability and thus a more constant energy input (PC2 of ecological opportunities). This conclusion is

further consistent with a recent study across a broad comparative sample in primates, showing diet

rather than measures of social complexity to be a main correlate of increasing brain size (DeCasien et

al. 2017).

Regarding the consequences of a relatively large brain, the highly significant associations with both

the social and ecological consequences as well as the interrelationship between them shows that large-

brained primates are competent in a broad range of complex cognitive abilities. This supports the

idea of general behavioral flexibility as a close associate of enhanced cognition (Reader and Laland

2002, Deaner et al. 2006, Reader et al. 2011, Navarrete et al. 2016). Further, these results are in

line with the findings in chapter 2, where we showed that large-brained primates are the ones with a

more complex foraging niche including a broader diet, tool use and cooperative hunting, all elements

representing ecological as well as social consequences. The positive feedback loop between ecological

and social consequences also supports the inclusive cultural intelligence framework, for which we found

evidence not only in primates (chapter 2), but also in birds (chapter 3). This feedback loop entails

that more complex ecological skills and foraging niches are promoted by higher frequencies of social

learning and vice versa. Ultimately this allows for access to more nutritive resources and thus more

energy, which again boosts an increase in brain size.

Even though the concept proposes a distinction between potential causes and consequences of enlarged

brains, it does not exclude the fact that adaptations are often the result of evolutionary feedback loops.

In other words, once a consequence has emerged, it may itself boost the effect of the ecological drivers

on enlarged brains. As consequences facilitate new opportunities, both opportunities and consequences

are meaningful for brain size evolution. For example, if social complexity (e.g. social learning ability)

can be used to coordinate ecological problems it may as well facilitate the effect of ecological oppor-

tunities on the evolution of enlarged brains by reducing the life-history filter (see also Implications for

Human Evolution, p.162; Fig. 6.2).

Future work should test the concept of opportunities and consequences also in other lineages. Consid-

ering the results in chapter 2 and 4, where no cognitive link with more complex foraging niches and no

clear cognitive buffer effect was found across non-primate mammals, enhanced cognition might entail

different eco- and socio-cognitive consequences of enlarged brains in these lineages.
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General Conclusions

This thesis investigated the coevolutionary patterns between relative brain size and three main ele-

ments encompassing social as well as ecological factors: (1) opportunities for socially mediated skill

acquisition, (2) foraging niche complexity and (3) a stabilized energetic intake (Fig. 6.1).

First, we showed that more opportunities for social learning in terms of prolonged learning peri-

ods and more tolerant role models enable the evolution of enlarged brains, in birds (chapter 3), and

indirectly in primates (chapter 2). Vice versa, chapter 5 provided evidence that large-brained primate

species show higher frequencies of social learning as part of the socio-cognitive consequences.

Second, we showed that the evolution of complex foraging niches or specific elements thereof show

correlated evolution with increased brain size. In primates, larger-brained species show higher levels

of food processing (chapter 2) and make use of a broader diet and sophisticated foraging techniques

including tools and hunting (chapter 2 and chapter 5). In carnivorans, on the other hand, we suggest

that the evolution of enhanced cognition is linked to more complex foraging niches, such as sophisti-

cated hunting techniques (e.g. cooperative hunting) (chapter 2). Yet, this remains to be investigated

in more detail. Additionally, our results in chapter 2 show that extended periods of (social) learning

also allow for the evolution into more complex foraging niches in primates as well as carnivorans.

Together, these findings suggest an evolutionary feedback loop between opportunities for skill learning,

complex foraging niches and relative brain size.

Third, we found evidence across all mammals that low degrees of experienced seasonality and thus a

stable consumption of energy-rich foods is crucial for brain size to increase (chapter 4). However, our

findings suggest that larger brains did not necessarily evolve to compensate for the lack of preferred

foods during the lean season. In fact, there is no clear evidence for the claim that larger-brained

non-primate mammalian species buffer seasonality more than smaller-brained species, in contrast to

previous findings in anthropoid primates (van Woerden et al. 2012, 2014).

Finally, the last chapter of this thesis integrated all three elements together with other social and

ecological factors in primates, and provides clear evidence that ecological more than social precondi-

tions are the main drivers in the evolution of increased brain size. Further, the findings showed that

once a large brain has evolved, the evolution of a variety of more complex socio- and eco-cognitive

abilities is possible. Potential differences between lineages (e.g. between primates and carnivorans)

have yet to be studied systematically by testing the conceptual framework of opportunities and con-

sequences also in non-primate mammals.

Future research should test systematically how opportunities for social learning and specific aspects

of foraging niche complexity are related to higher cognition in carnivorans. Furthermore, it should

investigate the role of complex foraging niches in relation to opportunities for social learning and brain

size, as well as how seasonality is related to the evolution of cognition across birds.
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Figure 6.1: The evolutionary pathways between relative brain size, opportunities for socially mediated skill acquisition, foraging niche
complexity and the energetic intake investigated in this thesis.

Implications for Human Evolution

The findings of this thesis ultimately help to understand the evolutionary history of our own lineage,

and helps to explain why humans stand out among all animals with a unique combination of the fea-

tures investigated in this thesis (Fig. 6.1): (1) complex foraging niches, (2) settling in all the world’s

habitats despite being exposed to various degrees of seasonality, (3) high levels of cumulative culture

and (4) an extremely large brain and its associated highly developed intelligence.

We humans inherited a slow developmental pace from our great ape ancestor and combined that

with high degrees of provisioning and resource sharing with infants, juveniles and even adults (Kaplan

and Gurven 2005). This allows for extended periods of practice and learning, ultimately enabling the

evolution into more complex foraging niches. In chapter 2, we showed that in primates a slow life

history and in carnivorans elongated periods of provisioning provide more time to learn skills and thus

allow to evolve into more complex foraging niches.

Around 2 Million years ago, genus Homo adopted persistent carnivory which lead to an overall in-

crease in diet quality implying a stable and substantial increase in the energetic supply (Ferraro et

al. 2013). This foraging adaptation towards a carnivorous and more nutrient dense diet co-occured

with the emergence of big-game hunting, more complex foraging technologies relying on tool use and

a substantial increase in relative brain size in Homo ergaster (Kaplan et al. 2000, Foley and Gamble

2009). We showed that a shift in diet towards higher proportions of meat allow non-primate mam-

mals to live in more seasonal habitats. Together with preceding studies in higher primates providing

evidence for cognitive buffering (van Woerden et al. 2012, 2014), this would suggest that in humans

the combination of a carnivorous foraging niche and high levels of cognitive buffering enabled for a

high and constant energetic input.

High quality and large, monopolizable foods are suggested to have further favored the evolution food

sharing and high levels of cooperation in the history of hominin evolution (Kaplan et al. 2000). The

eventual change in social system with the emergence of cooperative breeding with allomaternal care
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did not only allow females to buffer seasonality (Helstab et al. 2017), but also led to an increase

in social tolerance and thus more opportunities for social learning (Burkart et al. 2009). Thus, an

increase in brain size was further promoted through the effect of cultural intelligence (van Schaik et

al. 2012), for which we have shown comparative evidence in non-human primates as well as birds.

Furthermore, the positive feedback loop shaping the evolutionary history of the hominin lineage pro-

posed by Kaplan et al. (2000) is fully consistent with the concept of opportunities and consequences

(Fig. 6.2). Changing ecological conditions during the Pleistocene (1.7 MYA) led to the emergence of

the African Savanna, where energy-rich and difficult to process foods including animal and protected

plant foods (roots, tubers) became available. Besides that, the adoption of bipedality allowed for

efficient locomotion and thus wide-ranging foraging habits. Together these changes offered high de-

grees of ecological opportunities driving the evolution of enlarged brains. Larger brains then entailed,

on the one hand, more complex eco-cognitive abilities in terms of enhanced skills and on the other

hand, socio-cognitive consequences such as high levels of food sharing and cooperation as well as so-

cial learning. Together, these consequences led again to food resources of even higher quality, reduced

rates of mortality due to starvation and predation (i.e. a reduced severity of the life-history filter,

cf. van Schaik et al. 2012). In turn, this facilitates the coevolutionary processes in which ecological

opportunities favor the evolution of enlarged brains even more. In sum, the relatively large brain and

unmatched degree of intelligence in humans is the result of a positive feedback loop between an in-

creasing foraging niche complexity with high quality and stable foods, slow conservative development

and extended opportunities for social learning. This thesis shows that such a scenario is supported by

general patterns of correlated evolution that can also be found across other animals.

Figure 6.2: The history of hominin brain size evolution in terms of ecological opportunities and social and ecological consequences.
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